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Abstract. Controller Area Network (CAN) is the primary in-vehicle communication backbone but 

provides no built-in security, leaving vehicles susceptible to message-injection attacks. This study 

presents a novel algorithm that (1) systematically classifies CAN attack types, (2) computes an im-

pact-weighted probabilistic risk score per attack instance, (3) supplies an on-bus simulation envi-

ronment for controlled injections, and (4) embeds a lightweight hybrid detector combining an en-

semble classifier for known patterns with anomaly scoring for unknown activity. The main contri-

bution is a compact, interpretable scoring model (likelihood × impact × weight) integrated with a 

reproducible evaluation protocol and reference implementation for benchmarking on public CAN 

corpora. 
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1 Introduction 

Modern vehicles have transformed from mostly mechanical constructs into networked cyber-

physical systems in which numerous Electronic Control Units (ECUs) coordinate safety, control, and 

comfort functionalities. These modules communicate through in-vehicle networks selected according 

to bandwidth, latency, and cost requirements. The CAN standard has remained dominant for control-

critical domains because of its deterministic arbitration and low implementation overhead (ISO 11898, 

2015). Classical CAN that was introduced before cybersecurity became a central engineering concern. 

As a result, it lacks built-in cryptographic protection, message authentication, or origin validation 

(Miller, 2015). Any device with access to the bus can inject messages that appear legitimate in timing 

and format (Koscher, 2010). Experiments have verified that malicious message injections can influ-

ence braking, acceleration, or dashboard functions without specialized manufacturer credentials 

(Checkoway, 2011). 

The expansion of external connectivity through cellular links, Bluetooth modules, and diagnostic 

interfaces has further increased the reachable attack surface. Vulnerabilities in telematics or infotain-

ment subsystems have been shown to provide indirect access to internal communication buses, making 

remote compromise scenarios realistic (Miller, 2015). High-profile demonstrations have motivated 

stronger regulation and integration of cybersecurity engineering practices across the automotive sector. 

Defensive efforts follow two main paths: enhancing in-vehicle communication protocols and deploy-

ing detection mechanisms that monitor existing CAN traffic. Proposed mitigation techniques include 

encryption layers, authenticated frame formats, and transitions toward Ethernet-based architecture. In 

parallel, statistical and machine learning (ML) approaches aim to detect anomalies, spoofed traffic, or 

unusual frame timing patterns without invasive hardware changes (Muter, 2011). However, challenges 

persist, including limited public datasets, high false-positive rates in real conditions, and weak general-

ization outside laboratory settings. In table 1, a categorization of CAN bus attack types is outlined to 

emphasize the diversity of threat vectors that target message frequency, payload integrity, or identifier 

spoofing. Existing studies typically focus on a single attack scenario, overlooking the need for a uni-

fied risk view. Furthermore, validation efforts often lack reproducible procedures and consistent 

benchmarks across research groups. 
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This work addresses these limitations by proposing a unified threat-scoring concept and a hybrid 

detection algorithm. The approach integrates supervised models for known traffic deviations with 

anomaly scoring for emerging patterns. It also adopts publicly available datasets to support reproduci-

bility in measuring detection latency, accuracy, and false-positive behavior. The subsequent sections 

detail the threat model, scoring formulation, and validation methodology. 

Table 1. Categorization of CAN bus attack types. 

Attack class Primary vector 
Observable  

symptoms 

Typical  

impact 

Flooding / DoS 

High-rate injection 

of frames (single 

ID or many) 

Sudden decrease in 

inter-message inter-

vals; bus saturation 

Denial of service for 

legitimate ECUs and 

delayed/blocked con-

trol messages 

Fuzzing 

Randomized pay-

loads or malformed 

frames 

Increased payload en-

tropy; unexpected 

ECU replies 

ECU malfunction, er-

roneous sensor read-

ings, potential safety 

hazards 

Spoofing/ 

impersonation 

Crafting messages 

with legitimate IDs 

and plausible pay-

loads 

Conflicting state re-

ports, inconsistent 

cross-ECU readings 

Misleading instrument 

cluster, incorrect actu-

ator commands 

Replay 

Recording & re-

transmitting previ-

ously observed 

frames 

Periodic recurrence of 

historical frames; tim-

ing anomalies 

Reinstates old sensor 

states; can bypass na-

ive frequency checks 

 

2 Related work 

CAN security research has matured along two parallel lines: empirical demonstrations of practical 

attacks that reveal architectural weaknesses, and a broad set of defensive proposals that range from 

protocol changes to monitoring and ML-based detection. Early experimental analyses showed that real 

vehicles can be manipulated by injecting crafted CAN frames, thereby affecting critical functions 

without privileged manufacturer access (Koscher, 2010). Follow-up studies expanded the catalogue of 

feasible attacks and demonstrated end-to-end exploitation chains that combine software flaws with bus 

access, emphasizing that modern vehicles’ connectivity invalidates the original, trust-assumed CAN 

threat model (Checkoway, 2011). Subsequent technical reports and white papers provided concrete 

examples of remote attack vectors through telematics and infotainment modules, further motivating 

practical defenses (Miller, 2015). 

On the defensive side, efforts aimed at the protocol layer seek to introduce origin authentication 

and replay protection while keeping the latency and resource constraints of in-vehicle ECUs in mind. 

Standard-level work and automotive architecture initiatives propose secure onboard communication 

primitives and authenticated PDUs that can be retrofitted into modern stacks, although key-

management and backward compatibility remain significant deployment hurdles in legacy fleets. Be-

cause full protocol replacement or wholesale cryptographic retrofitting is often impractical for existing 

vehicles, a substantial branch of literature focuses on non-invasive detection: lightweight statistical 

checks, signature filters, rule-based gateways and supervised classifiers that infer anomalies from tim-

ing, identifier and payload patterns (Bari, 2023). 

ML techniques form a particularly active strand of defense research due to their ability to learn dis-

criminative patterns without modifying ECU firmware. Comparative studies demonstrate that tree-

ensemble methods, such as Random Forests and gradient boosting, often deliver strong detection per-
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formance on curated benchmarks when fed with carefully engineered features derived from inter-

message timing, payload statistics and rolling ID frequencies (Bari, 2023). Time-series and sequence-

prediction methods, including Long Short-Term Memory (LSTM) and related recurrent architectures, 

have also been applied to forecast expected message values or inter-arrival intervals and to flag devia-

tions as anomalies (Qin, 2021). 

Despite promising results, ML-based approaches face recurring practical limitations: models 

trained on one dataset often fail to generalize to vehicles with different OEM message semantics, and 

high false-positive rates in operational settings can render otherwise accurate detectors unusable (Pinto 

, 2023). Recent critical evaluations illustrate that commonly used public corpora contain collection 

artifacts and limited operational diversity that may inflate reported metrics when naive train/test splits 

are employed (Kidmose, 2024). In response, newer dataset curation efforts aim to create broader, more 

representative corpora and to define conservative evaluation protocols (for example, time-based splits 

and leave-one-attack-instance-out validation) that better reflect real deployment scenarios (Lampe, 

2024). 

Finally, reproducibility and the bridging of simulation to field-grade validation remain practical ob-

stacles. Many published works report high accuracy on individual datasets but omit latency, resource 

footprint, or robust cross-dataset testing that would be necessary for deployment on embedded gate-

way hardware (Pinto, 2023). Taken together, these gaps motivate unified frameworks that combine 

threat modeling, realistic simulation/injection tooling and multi-corpus validation to demonstrate reli-

able detection performance under conservative, deployment-oriented evaluation regimes. 

3 Proposed algorithm 

The proposed intrusion detection algorithm is an integrated, gateway-deployable approach that 

combines a probabilistic risk model with a hybrid detection pipeline. The design goals are (1) to assign 

higher operational priority to events that are both likely malicious and potentially high impact, (2) to 

retain lightweight, real-time processing suitable for embedded gateways, and (3) to provide an inter-

pretable fusion of supervised detection and unsupervised anomaly evidence. The algorithm treats each 

observed CAN frame as an event whose significance is measured along two orthogonal axes: the like-

lihood of maliciousness and the operational impact if the frame is accepted by downstream ECUs. By 

accumulating weighted evidence in a sliding window and applying adaptive fusion rules, the frame-

work separates transient benign deviations from persistent or coordinated attack patterns. Figure 1 

schematically outlines this end-to-end workflow, depicting the sequential flow from raw CAN data 

acquisition through feature extraction, probabilistic scoring, risk-weight fusion, and final decision 

generation.  
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Fig. 1. Mechanism of logical processing pipeline for the proposed algorithm 

Each incoming CAN frame 𝑖 is represented by a feature vector 𝑥𝑖 that encodes timing, identifier 

statistics, payload characteristics and contextual meta-features (e.g. ECU role or mapped control do-

main). A supervised classifier 𝑓(·) produces a continuous score interpreted as a probability-like confi-

dence 𝑝𝑖 ∈ [0, 1] that the frame is malicious; simultaneously the system computes an impact weight 

𝜔𝑖 expressing the criticality of the message (higher for safety-relevant IDs). The instantaneous risk 

contribution of the frame is therefore defined as: 

 𝑅𝑖 = 𝑝𝑖 ⋅ 𝜔𝑖 (1) 
 

To capture persistence and coordinated effects, risk contributions accumulate in a sliding observation 

horizon of length 𝑇. Let 𝛺(𝑇) be the set of indices of frames observed in the last 𝑇 seconds; the de-

cayed cumulative risk uses an exponential decay kernel with time constant 𝜏 so that older contribu-

tions weigh less: 

 
𝑅𝑡𝑜𝑡𝑎𝑙(𝑇) = ∑ 𝑅𝑖

𝑖∈𝛺(𝑇)

⋅ 𝑒𝑥𝑝 (−
𝑡𝑛𝑜𝑤 − 𝑡𝑖

𝜏
) (2) 

 

The supervised component produces the likelihood score: 

 𝑝𝑖 = 𝑓(𝑥𝑖) (3) 
 

where 𝑓 is the trained mapping (for example, a tree-ensemble producing calibrated probabilities). The 

impact weight 𝜔𝑖 is computed from domain descriptors such as the message’s mapped control func-

tion criticality 𝑐𝑖 and a safety relevance marker 𝑠𝑖. To keep weights comparable across message clas-

ses the algorithm uses a normalized convex combination: 

 
𝜔𝑖 =

𝑎𝑐𝑖 + 𝛽𝑠𝑖

𝑎 + 𝛽
 (4) 

with user-tunable coefficients 𝑎, 𝛽 > 0.  Normalization ensures 𝜔𝑖  lies in a predictable numerical 

range and can be adjusted by the integrator to reflect vehicle-specific safety policy. 
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Because some attacks are subtle in classifier space but manifest as statistical deviations, the algo-

rithm computes a complementary anomaly score 𝐴𝑖  for each frame. 𝐴𝑖  is produced by a lightweight 

unsupervised detector (e.g. an isolation-style method or a Mahalanobis distance on an incrementally 

updated baseline). The system forms a combined per-frame signal by fusing probabilistic and anomaly 

evidence. A compact, thresholder decision rule for flagging an individual frame is: 

 if  𝑅𝑖 + 𝜆𝐴𝑖 > 𝜃  then frame 𝑖 is suspicious (5) 
 

where 𝜆 balances the relative influence of the anomaly score and 𝜃 is a tunable sensitivity threshold. 

Frames marked suspicious are optionally diverted to a secondary verification stream; they also in-

crease the cumulative risk. 

For gateway-level actioning, a windowed fusion score is applied that aggregates normalized super-

vised and anomaly signals, weighted by per-frame criticality. Define the normalized anomaly score 

𝐴̃𝑖 ∈ [0, 1] and fusion coefficient 𝛾 ∈ [0, 1]; the window fusion score 𝑆(𝑇) is: 

 𝑆(𝑇) = ∑ (𝛾𝑝𝑖 + (1 − 𝛾)𝐴̃𝑖)𝜔𝑖

𝑖∈𝛺(𝑇)

 (6) 

 

An operational alert is raised when 𝑆(𝑇) exceeds a deployment threshold Θ. Because 𝑆(𝑇) explicitly 

weights evidence by impact 𝜔𝑖, small numbers of high-impact suspicious frames can trigger protective 

responses faster than voluminous low-impact noise. Response policies are configurable: soft response 

logs and notifications, a medium response rate-limits or quarantines sender of the frame, and a hard 

response may block messages with particular IDs or switch the gateway to a safe mode. 

Feature engineering and online efficiency are central concepts for the proposed algorithm. The rec-

ommended feature set includes inter-arrival time delta Δt, rolling identifier frequency vectors, byte-

level payload entropy, payload byte histograms, and short payload n-gram signatures. Features are 

computed in an incremental, streaming fashion so that each feature update has amortized constant cost. 

To enforce real-time guarantees the algorithm uses bounded-complexity extractors and opportunistic 

sampling under extreme bus load; the supervised model is a compact ensemble (e.g., small Random 

Forest) quantized for embedded inference, while the anomaly detector is a low-memory isolation vari-

ant with reservoir sampling for baseline maintenance. Interpretability is enabled through per-frame 

diagnostics and score decomposition: each alert includes 𝑝𝑖, 𝐴𝑖,   𝜔𝑖 and the top contributing features. 

This transparency supports offline forensics and eases integration with vehicle security operations. 

Incremental learning is also supported: flagged frames confirmed as benign can be passed to a con-

trolled re-labeling pipeline to reduce false positives; confirmed attacks can be harvested to expand 

supervised training sets. 

A practical deployment consideration is computational cost versus detection latency. Let 𝐿 be the 

detection latency (time between frame arrival and final decision) and let 𝐶(𝐿) denote a simplified 

composite cost that penalizes latency and false positive rate (𝐹𝑃𝑅). A linear surrogate cost model can 

be used during parameter tuning: 

 𝐶(𝐿, 𝐹𝑃𝑅) = 𝜇𝐿 + 𝜈𝐹𝑃𝑅 (7) 
 

where 𝜇, 𝜈 are weights reflecting operational priorities. During system tuning, parameters 𝜃, Θ, 𝜆, 𝛾, 𝜏 

are selected to minimize 𝐶 subject to safety constraints (for example, bounded FNR on safety-critical 

IDs). 

Integration with vehicle platforms is realized at the gateway or a dedicated security ECU. Figure 2 

presents C++ style pseudocode of the detection loop, illustrating the runtime sequencing and the prin-

cipal decision points and thereby complementing the architectural overview in Figure 1. 
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Fig. 2. C++ pseudocode for the proposed algorithm 

Model clf;              // supervised classifier, returns probability p in [0,1] 
AnomEngine anom;        // lightweight anomaly engine, returns score A >= 0 
ContextTable ctx;       // maps CAN ID -> (criticality c, safety s) 
 
double theta = ...;     // per-frame suspicion threshold 
double Theta = ...;     // window alert threshold 
double lambda = ...;    // anomaly weight 
double gamma = ...;     // fusion weight 
double tau = ...;       // decay constant 
WindowBuffer window(T); // holds recent events 
 
initialize(clf, anom, ctx, theta, Theta, lambda, gamma, tau, window); 
 
while (system_active()) { 
CAN_Frame msg = readCAN();  
FeatureVector x = extractFeatures(msg);    // delta_t, id_freq, payload_entropy, etc. 
 
double p = clf.predict(x);                 // Eq.3: supervised probability 
Context ctxEntry = ctx.lookup(msg.id); 
double w = normalize(alpha*ctxEntry.c + beta*ctxEntry.s); // Eq.4 
double R = p * w;                          // Eq.1 
 
double A = anom.score(x);                  // anomaly evidence (non-negative) 
double combined = R + lambda * A;          // per-frame fused score 
 
if (combined > theta) { 
markSuspicious(msg, p, A, w);         // flag for secondary checks / logging 
} 
 
window.push({now(), p, A, w, R}); 
double S = 0.0; 
for (auto &e : window.items()) { 
double age = now() - e.t; 
double decay = exp(-age / tau); 
S += (gamma * e.p + (1.0 - gamma) * normalizeA(e.A)) * e.w * decay; // Eq.6 
} 
 
if (S > Theta) { 
triggerAlert(S, window.summary()); 
takeMitigationAction();                // configurable: rate-limit / quarantine / safe-mode 
} 
 
maintainWindow(window, T);                 // evict stale entries 
} 
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4 Experimental results 

This section describes the experimental setup used to evaluate the proposed algorithm and presents 

illustrative simulation results. The described experiments are intended as a reproducible evaluation 

protocol and demonstration: the numerical plots shown in Figures 3–5 are derived from synthetic sim-

ulations created to illustrate expected behavior of the detection model. The evaluation protocol as-

sumes two data sources: (1) a public CAN corpus (HCRL / Car-Hacking) for benchmarking where 

available, and (2) a controlled synthetic CAN traffic generator used to create labeled traces containing 

benign traffic and injected attacks (flooding/DoS, payload fuzzing, and spoofing). The implementation 

for the experiments is a python-based pipeline: feature extraction (inter-arrival Δt, per-ID frequency, 

payload entropy, short n-gram histograms), a compact supervised classifier (quantized Random For-

est) for 𝑝𝑖 = 𝑓(𝑥𝑖) and a lightweight anomaly engine (isolation-style) for 𝐴𝑖 . The sliding window 

length 𝑇, decay constant 𝜏 and thresholds 𝜃, Θ are configurable; for the illustrative runs below, repre-

sentative parameters are used: 𝑇 = 5 𝑠, 𝜏 = 2 𝑠, 𝜃 = 0.3, Θ = 2.5, 𝜆 = 1.0, 𝛾 = 0.6, α =  β = 1.0. 

The metrics reported are true positive rate (TPR), FPR, precision/recall tradeoffs, and detection laten-

cy under varying bus load, measured in packets per second (pps). The synthetic traces contain labeled 

attack injections of controlled intensity and duration so that detection metrics can be computed pre-

cisely. 

Figure 3 reports the TPR of the algorithm detector as attack intensity increases. Observed results 

confirm the expectations for outperforming single-branch detectors across a wide range of attack in-

tensities while maintaining modest FPRs. The curve shows that the detector maintains a high TPR 

across the tested range: about 95.60% at very low intensity (10 pps), dropping to 94.50% at 50 pps, 

slightly recovering to 94.80% at 100 pps, then declining to 94.10% at 200 pps and 93.15% at 500 pps. 

Overall, the end-to-end decrease is modest (≈2.45 percentage points from the lowest to the highest 

intensity), which indicates that the hybrid, risk-weighted design is robust to increasing packet rates and 

preserves detection capability under heavier traffic. 

 

 

Fig. 2. Mechanism of logical processing pipeline for the proposed algorithm 

Figure 4 presents the relationship between precision and recall as a function of the decision thresh-

old θ, highlighting the intrinsic trade-off between sensitivity and selectivity in the proposed detection 

model. At lower thresholds, the system becomes more permissive, capturing a larger portion of mali-

cious activity but also introducing additional false positives. Conversely, higher thresholds improve 

the reliability of individual detections at the cost of missing some true attack instances. This balance 

illustrates that the optimal operating point is not fixed but depends on the specific vehicle domain and 

its tolerance for false alarms. For example, safety-critical control buses may prioritize higher recall, 



 

 

https://doi.org/10.29114/ajtuv.vol9.iss2.350    

Vol. 9 Issue 2 (2025)  

ISSN 2603-316X (Online) 
Published:   2025-12-30  

 

 Page | 68  

 

while non-safety networks benefit from stricter thresholds that favor precision. The overall trend 

demonstrates that the model maintains a stable trade-off region where both metrics achieve balanced 

performance, suggesting that adaptive or domain-specific threshold tuning could further enhance oper-

ational robustness. 

 

 

Fig. 3. Mechanism of logical processing pipeline for the proposed algorithm 

Figure 5 illustrates the relationship between system latency and FPR under varying traffic intensi-

ties. The results demonstrate that as network load increases, both latency and FPR rise moderately, 

reflecting the natural trade-off between computational overhead and detection accuracy in real-time 

environments. Despite this increase, the overall latency remains within acceptable bounds for in-

vehicle communication systems, indicating that the model sustains near real-time responsiveness even 

at high message rates. Similarly, the FPR growth remains gradual, showing that the algorithm main-

tains stable discrimination capability without overreacting to benign traffic fluctuations. This propor-

tional scaling behavior suggests that the approach is well-suited for embedded deployment scenarios, 

where constrained computational resources must coexist with stringent timing and reliability require-

ments. 

 

 

Fig. 4. Mechanism of logical processing pipeline for the proposed algorithm 
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5 Conclusion 

This study addressed the lack of native security mechanisms in in-vehicle CAN networks by pro-

posing a lightweight, risk-oriented detection algorithm combining probabilistic scoring and hybrid 

evidence fusion. The approach prioritizes events with both high likelihood of maliciousness and high 

operational impact, allowing efficient, real-time monitoring suitable for embedded gateways. 

A brief review of existing CAN intrusion detection strategies highlighted limitations in rule-based 

and purely statistical approaches, motivating the proposed hybrid model that merges supervised and 

anomaly-based reasoning under a unified risk-weighted structure. 

Experimental simulations showed that the algorithm maintains strong detection accuracy across 

varying attack intensities, achieving a stable balance between precision, recall, and latency. While 

results confirm its reliability and adaptability, performance under extreme load and threshold sensitivi-

ty remain areas for refinement. 

Future work will focus on validation with real CAN traffic datasets, improving robustness against 

adversarial, as well as unseen attack patterns, and optimizing runtime efficiency for deployment in 

production vehicles. Overall, the proposed approach demonstrates a practical and interpretable path-

way toward enhanced in-vehicle network security. 
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