Combined WiFi sensor for temperature and moisture of soil

Authors

DOI:

https://doi.org/10.29114/ajtuv.vol6.iss2.279

Keywords:

soil moisture sensor, capacitive sensor, soil moisture, arduino, PV panel

Abstract

Physical parameters, such as temperature and moisture of soil, are important indicators in agriculture. The current study focuses on the development and assembly of an autonomous sensor for soil moisture and temperature through the use of a standard Arduino d1 mini module, equipped with a capacitive humidity sensor. The developed sensor configuration is distinguished with the possibility to transmit data via WiFi communication network and renewable energy system with photovoltaic power panel, which allows the results to be transmitted wirelessly and the sensor to operate autonomously powered by solar energy.

Downloads

Download data is not yet available.

References

<p>Alex Martinez and Alan P. Byrnes, (2002) "Modeling Dielectric-constant values of Geologic Materials: An Aid to Ground-Penetrating Radar Data Collection and Interpretation", Current Research in Earth Sciences, Bulletin 247, part 1.<br /><a href="https://doi.org/10.17161/cres.v0i247.11831" target="_blank">Crossref</a><br />&nbsp;<br />Bankova A., Dimitrova T., (2016) Computer modeling and design of parts and assemblies, Eastern Academic Journal 12(4), 69-75. ISSN: 2367-7384</p>
<p>&nbsp;<br />Bankova А., (2020) Application of a method for calculating the sizes of perspective objects, International Conference on Technics, Technologies and Education ICTTE 2020, Faculty of Technics and Technologies of Yambol, Trakia University of Stara Zagora, Bulgaria-November 4-6 2020. ISSN 1314-8788<br />&nbsp;<br />Ivanov, I., Ivelin Ivanov, (2015). The Iterative solution to LQ Zero-Sum Stochastic Differential. Games, Journal of Applied Mathematics and Computing. Appl. Math. 6, 1263-1270 (2015). ISSN: 1598-5865 <a href="https://link.springer.com/article/10.1007%2Fs12190-017-1086-3" target="_blank">https://link.springer.com/article/10.1007%2Fs12190-017-1086-3</a><br />&nbsp;<br />Ivanov, I., (2022). Improving the accuracy of the machine learning predictive models for analyzing. CHD dataset, Journal of Mathematical and Computational Science, J. Math. Comput. Sci., 12.&nbsp; ISSN: 1927-5307<br /><a href="https://doi.org/10.28919/jmcs/6647" target="_blank">Crossref</a><br />&nbsp;<br />Fedro S. Zazueta and Jiannong Xin, (1994); Soil Moisture Sensors. University of Florida, Gainesville FL 32611, Bulletin 292.<br />&nbsp;<br />Jensen, C.R., Mogensen, V.O., Poulsen, H.H., Henson, I.E., Aagot, S., Hansen, E., Ali, M., Wollenweber, B., (1998). Soil water matric potential rather than water content determines drought responses in field-grown lupin (Lupinus angustifolius). Aust. J. Plant Phys. 25, 353-363.<br /><a href="https://doi.org/10.1071/PP97072" target="_blank">Crossref</a><br />&nbsp;<br />Heim, R.R.J., (2002). A review of twentieth-century drought indices used in the United States. Bull. Am. Meteorol. Soc. 83, 1149-1165.<br /><a href="https://doi.org/10.1175/1520-0477-83.8.1149" target="_blank">Crossref</a><br />&nbsp;<br />Hrisko, J. (2020). Capacitive Soil Moisture Sensor Calibration with Arduino. Maker Portal. <a href="https://makersportal.com/blog/2020/5/26/capacitive-soil-moisture-calibration-with-arduino" target="_blank">https://makersportal.com/blog/2020/5/26/capacitive-soil-moisture-calibration-with-arduino</a><br />&nbsp;<br />Jim Bilskie, (2001) Soil water status: content and potential, Campbell Scientific, Inc. 1 815 W. 1800 N., Logan, UT 84321-1784 (435). 753-2342.</p>

Downloads

Published

2022-12-31

How to Cite

Atanasov, A. I., Mihaylov, R., Stoyanov, S., & Mihaylova, D. (2022). Combined WiFi sensor for temperature and moisture of soil. ANNUAL JOURNAL OF TECHNICAL UNIVERSITY OF VARNA, BULGARIA, 6(2), 77–82. https://doi.org/10.29114/ajtuv.vol6.iss2.279

Issue

Section

ELECTRICAL ENGINEERING, ELECTRONICS AND AUTOMATION

Similar Articles

You may also start an advanced similarity search for this article.