Processing of data from complex objects through pattern recognition methods

Authors

  • Mariya Ivanova Konsulova - Bakalova Technical University of Varna

DOI:

https://doi.org/10.29114/ajtuv.vol2.iss1.69

Keywords:

pattern recognition, , statistical processing, , complex objects

Abstract

 In the description of complex objects, we need methods which could reflect the complex interconnections between components and sift out if possible those of them which are substantial for the specific application. It is offered in this publication the pattern recognition methods should be used as a unified method for processing of data from complex objects. The proposed algorithm may be used in the recognition of the condition of objects of various nature. The indicated examples prove the practical applicability of the methodology as they represent the solution of specific practical problems.

Downloads

Download data is not yet available.

References

<p>Bar-Yam, Yaneer (2002). General Features of Complex Systems. Encyclopedia of Life Support Systems. EOLSS UNESCO Publishers, Oxford, UK. Retrieved 16 September 2014<br /> <br />Duda R.O., P.E. Hart, D.G. Stork (2001), Pattern Classification, Wiley Interscience.<br /> <br />Jolliffe I.T. (2002), Principal Component Analysis, Second Edition, Springer Series in Statistics.&nbsp;<br /><a href="https://doi.org/10.1007/b98835" target="_blank" rel="noopener">Crossref</a><br /> <br />Bro, R., &amp; Smilde, A. K. (2014). Principal component analysis. Analytical Methods, 6(9), 2812-2831.&nbsp;<br /><a href="https://doi.org/10.1039/C3AY41907J" target="_blank" rel="noopener">Crossref</a><br /><br />Rumbos A.J. (2009). Statistical Theory. Lecture Notes. http://pages.pomona.edu/~ajr04747/Fall2009/Math152/Notes/Math152NotesFall09.pdf<br /> <br />Vapnik, V. N. (2000). The Nature of Statistical Learning Theory. "Springer", N.Y.&nbsp;<br /><a href="https://doi.org/10.1007/978-1-4757-3264-1" target="_blank" rel="noopener">Crossref</a><br /> <br />Naskova, P. (2017). Mathematical Model for Evaluation of the Content of Heavy Metals in Soil by Indirect Plant Signatures. New knowledge Journal of science, 6(3), 149-160.<br /> <br />Божанов, Е. С., &amp; Вучков, И. Н. (1983). Статистически методи за моделиране и оптимизи-ране на многофакторни обекти. Техника.<br /> <br />Konsulova, M., Naskova, P., Plamenov, D., &amp; Malcheva, B. (2017). Recognition and probability of migrant microbiological activity by indirect signature. Pochvoznanie, agrokhimiya i ekologiya/Bulgarian Journal of Soil Science, Agrochemistry and Ecology, 51(3/4), 12-20. (In Bulgarian)<br /> <br />Митев, Д. Г., Д. Димитров, Р. Узунов (2004). Управление на сложни системи. Изд. на Шу-менски унив. Епископ Константин Преславски. Център за дистационно обучение. ISBN 954-577-229-8<br /> <br />Недев А. (2012). Разпознаване на образи и оптимално стохастичеко управление, I част, ИК "Геа-Принт", Варна, ISBN 978-954-9430-80-6<br /> <br />Недев А., К. Тенекеджиев (1994). Техническа диагностика и разпознаване на образи, Издателство ТУ-Варна.<br /> <br />Недев А., М. Бакалова, Г. Антонов, Б. Андреев, С. Сезгин, Д. Камберов (2012). Разпознаване на образи и оптимално стохастичеко управление. Приложение на методите за разпознаване на образи в управлението на стопански, биологични и обществени системи, ИК "Геа-Принт", Варна, ISBN 978-954-9430-91-2</p>

Downloads

Published

2018-06-30

How to Cite

Konsulova - Bakalova, M. I. (2018). Processing of data from complex objects through pattern recognition methods. ANNUAL JOURNAL OF TECHNICAL UNIVERSITY OF VARNA, BULGARIA, 2(1), 30–38. https://doi.org/10.29114/ajtuv.vol2.iss1.69

Issue

Section

ELECTRICAL ENGINEERING, ELECTRONICS AND AUTOMATION

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.