On another proof of the formula E = m.c2 according to the rotary theory

Authors

  • Emil Ivanov Panov Technical university of Varna

DOI:

https://doi.org/10.29114/ajtuv.vol1.iss1.22

Keywords:

energy and mass of the bodies, special theory of relativity, Maxwell’s electromagnetic theory, rotary theory of the electromagnetic field

Abstract

The paper is dedicated to one of the greatest breakthroughs in the classical physics at the beginning of the 20-th century – the appearance of the special theory of relativity of Albert Einstein in 1905. In it, by the help of the rotary theory, a new proof of the most famous formula in the world – the equation giving the connection between the energy and the mass of the bodies, is presented. Rotary theory appeared in 1998, trying to explain the electromagnetic phenomena from another point of view and to answer to series of questions connected with the basic electromagnetic laws, reaching the same results but giving simpler and direct answers compared with the classical electromagnetic theory of Maxwell. In it, by the help of the method of moments, the vector of the magnetic field intensity and the vector of the magnetic flux density are presented as moments of the vector of the current density of the tangential displacement current , claiming in this way that the magnetic field is a form of rotating electric field. The final result is a set of electromagnetic equations in fully electrical form, depicting all the electromagnetic phenomena from another point of view.

Downloads

Download data is not yet available.

References

<p>Einstein, A. (1905). Zur elektrodynamik bewegter k&ouml;rper. Annalen der Physik, 17, 891-921. (in German)<br /><a href="https://doi.org/10.1002/andp.19053221004" target="_blank" rel="noopener">Crossref</a><br /> <br />Einstein, A., Laub, J. (1908). &Uuml;ber die elektromagnetischen grundgleihungen f&uuml;r bewegte k&ouml;rper. Annalen der Physik, 331(8), 532-540. (in German)<br /><a href="https://doi.org/10.1002/andp.19083310806" target="_blank" rel="noopener">Crossref</a><br /> <br />Feynmann, R., Leighton, R., Sands, M. (1964a). The Feynmann lectures on physics. vol. 1, Addison Wesley Publishing House, Inc.<br /> <br />Feynmann, R., Leighton, R., Sands, M. (1964b). The Feynmann lectures on physics. vol. 2, Addison Wesley Publishing House, Inc.<br /> <br />Hertz, H. (1890). Ueber die grundgleichungen der electrodynamik f&uuml;ruhende k&ouml;rper. Wied. Ann., 41, 106-149. (in German)<br /> <br />Kittel, C., Knight, W. D., Ruderman M. A. (1963). Mechanics, Berkeley physics course. vol. I, McGraw-Hill Book Co., N. Y.<br /> <br />Lorentz, H. A. (1904). Electromagnetic phenomina in a system moving with any velocity less than that of light. A. Inst. Proc., 6, 809-831.<br /> <br />Maxwell, J. C. (1861). On physical lines of force. Philosophical Magazine and Journal of Science, Part I, 161-175. Part II, 281-291, 338-347 (March). Part III, 12-24, (April, May). Part IV, 85-95.<br /><a href="https://doi.org/10.1080/14786446108643067" target="_blank" rel="noopener">Crossref</a><br /> <br />Maxwell, J. C. (1865). A Dynamical theory of the electromagnetic field. Philosophical Transactions of the Royal Society of London, 155, 459-512.<br /><a href="https://doi.org/10.1098/rstl.1865.0008" target="_blank" rel="noopener">Crossref</a><br /> <br />Maxwell, J. C. (1873). A treatise on electricity and magnetizm. vol. I, vol. II, Macmillan and co., London, United Kingdom.<br /> <br />Meerovich, E. A. (1966). Методы релятивисткой электродинамики в электротехнике. Энергия, Москва. (in Russian)<br /> <br />Panov, E. I. (2015). Rotary theory of the magnetic field, basics, concepts, methods and models. (Monograph, 148 p.), LAP Lambert Academic Publishing, Germany. ISBN 978-3-659-78098-1<br /> <br />Panov, E. I. (2016). Rotary theory of the electromagnetic field. Proceedings of the XIX-th International Symposium on Electrical Apparatus and Technologies SIELA'2016, 244-247. Bourgas, Bulgaria. (SCOPUS) IEEE Catalog Number: CFP1628Z-PRT, ISBN: 978-1-4673-9521-2<br /><a href="https://doi.org/10.1109/SIELA.2016.7543032" target="_blank" rel="noopener">Crossref</a><br /> <br />Panov, E. I. (2017a). On the electrodynamics of moving bodies according to the rotary theory. Proceedings of the Second International Scientific Conference "Intelligent Information Technologies for Industry" (IITI'17), Advances in Intelligent Systems and Computing 680, 2, 280-289, Springer. (SCOPUS) doi:10.1007/978-3-319-68324-9_31<br /><a href="https://doi.org/10.1007/978-3-319-68324-9_31" target="_blank" rel="noopener">Crossref</a><br /> <br />Panov, E. I. (2017b). On the electromagnetic radiation from a short electric dipole according to the rotary theory. Proceedings of the Second International Scientific Conference "Intelligent Information Technologies for Industry" (IITI'17), Advances in Intelligent Systems and Computing 680, 2, 290-300, Springer. (SCOPUS) doi:10.1007/978-3-319-68324-9_32<br /><a href="https://doi.org/10.1007/978-3-319-68324-9_32" target="_blank" rel="noopener">Crossref</a><br />Pauli, W. Jr. (1983). Теория относительности. Наука, Москва. (in Russian)<br /> <br />Purcell, E. M. (1965). Electricity and magnetism, Berkeley physics course. vol. II, McGraw-Hill Book Co., N. Y.<br /> <br />Savelev, I. V. (1977). Курс общей физики. Механика. Молекулярная физика. Том I, Наука, Москва. (in Russian)<br /> <br />Simonyi, K. (1966). Theoretische elektrotehnik. VEB Deutcher Verlag Der Wissenschaften, Berlin. (in German)<br /> <br />Smythe, W. R. (1989). Static and dynamic electricity. Third Edition, Hemisphere Publishing Corporation.</p>

Downloads

Published

2017-12-28

How to Cite

Panov, E. I. (2017). On another proof of the formula E = m.c2 according to the rotary theory. ANNUAL JOURNAL OF TECHNICAL UNIVERSITY OF VARNA, BULGARIA, 1(1), 13–20. https://doi.org/10.29114/ajtuv.vol1.iss1.22

Issue

Section

ELECTRICAL ENGINEERING, ELECTRONICS AND AUTOMATION

Similar Articles

<< < 1 2 

You may also start an advanced similarity search for this article.