Development and Validation of a Finite Element Model for Bird Strike Test
DOI:
https://doi.org/10.29114/ajtuv.vol8.iss1.310Ключевые слова:
bird strike, SPH, simulation, LS-DYNAАннотация
A bird strike describes a collision between an aircraft and a bird or a group of birds. A bird strike refers to any collision between a moving vehicle and a fly creatures. Bird strike are studied through experiments or simulations. The testing method produces reliable results, close to reali-ty. However, these practical experiments are expensive and time-consuming. This study performs numerical simulation of bird strike phenomenon using SPH technique. This article presents how to build a bird strike model on LS-DYNA software. The results of the simulation were compared with experiments, demonstrating that the numerical method is a reasonable approach to examine bird strike problems.
Скачивания
Библиографические ссылки
<li>Arachchige, B., Ghasemnejad, H., & Yasaee, M. (2020). Effect of bird-strike on sandwich composite aircraft wing leading edge. Advances in Engineering Software, 148, 102839. <a href="https://doi.org/10.1016/j.advengsoft.2020.102839">Crossref</a></li>
<li>Otero, B. F., Herranz, J., & Malo, J. E. (2023). Bird flight behavior, collision risk and mitigation options at high-speed railway viaducts. Science of The Total Environment, 902, 166253. <a href="https://doi.org/10.1016/j.scitotenv.2023.166253">Crossref</a></li>
<li>Ćwiklak, J., Kobiałka, E., & Goś, A. (2022). Experimental and numerical investigations of bird models for bird strike analysis. Energies, 15, 3699. <a href="https://doi.org/10.3390/en15103699">Crossref</a></li>
<li>Zhang, D., & Fei, Q. (2016). Effect of bird geometry and impact orientation in bird striking on a rotary jet-engine fan analysis using SPH method. Aerospace Science and Technology, 54, 320-329. <a href="https://doi.org/10.1016/j.ast.2016.05.003">Crossref</a></li>
<li>Sun, F., Sun, Q., Ni, L., & Liang, K. (2019). Numerical analysis of anti-bird strike performance in structural connection design for a vertical tail leading edge. Thin-Walled Structures, 144, 106319. <a href="https://doi.org/10.1016/j.tws.2019.106319">Crossref</a></li>
<li>Ekici, F., Gümüş, Ö., Uslu, A., & Kale, U. (2023). An investigation of bird strike cases in the aviation sector with a novel approach within the context of the principal-agent phenomenon: Bird strikes and insurance in the USA. Heliyon, 9(7), e18115. <a href="https://doi.org/10.1016/j.heliyon.2023.e18115">Crossref</a></li>
<li>Lamanna, G., De Luca, A., Marzocchella, F., Di Caprio, F., Belardo, M., Di Palma, L., & Caputo, F. (2023). Tendency analysis of a tilt rotor wing leading edge under bird strike events. Forces in Mechanics, 10, 100173. <a href="https://doi.org/10.1016/j.finmec.2023.100173">Crossref</a></li>
<li>Pernas-Sánchez, J., Artero-Guerrero, J., Varas, D., & López-Puente, J. (2020). Artificial bird strike on Hopkinson tube device: Experimental and numerical analysis. International Journal of Impact Engineering, 138, 103477. <a href="https://doi.org/10.1016/j.ijimpeng.2019.103477">Crossref</a></li>
<li>Juračka, J., Chlebek, J., & Hodaň, V. (2021). Bird strike as a threat to aviation safety. Transportation Research Procedia, 59, 281-291. <a href="https://doi.org/10.1016/j.trpro.2021.11.120">Crossref</a></li>
<li>Liu, J., Li, Y., & Gao, X. (2014). Bird strike on a flat plate: Experiments and numerical simulations. International Journal of Impact Engineering, 70, 21-37. <a href="https://doi.org/10.1016/j.ijimpeng.2014.03.006">Crossref</a></li>
<li>Yan, J., Zhang, C., Huo, S., Chai, X., Liu, Z., & Yan, K. (2021). Experimental and numerical simulation of bird-strike performance of lattice-material-infilled curved plate. Chinese Journal of Aeronautics, 34(8), 245-257. <a href="https://doi.org/10.1016/j.cja.2020.09.026">Crossref</a></li>
<li>Liu, J., Liu, Z., & Hou, N. (2019). An experimental and numerical study of bird strike on a 2024 aluminum double plate. Acta Mechanica Solida Sinica, 32, 40-49. <a href="https://doi.org/10.1007/s10338-018-0071-1">Crossref</a></li>
<li>LS-DYNA Keyword User’s Manual. (2021). Livermore Software Technology Corporation. <a href="https://www.dynasupport.com/manuals">Crossref</a></li>
<li>LS-DYNA Theoretical Manual. (2006). Livermore Software Technology Corporation. <a href="https://www.dynasupport.com/manuals">Crossref</a></li>
<li>Gang, L., Ziming, X., Haitao, S., Wei, C., & Zhang, H. (2021). Experimental study on the impact load of internally supported gelatin bird projectiles. Engineering Failure Analysis, 124, 105336. <a href="https://doi.org/10.1016/j.engfailanal.2021.105336">Crossref</a></li>
<li>Guida, M., Marulo, F., Belkhelfa, F. Z., & Russo, P. (2022). A review of the bird impact process and validation of the SPH impact model for aircraft structures. Progress in Aerospace Sciences, 129, 100787. <a href="https://doi.org/10.1016/j.paerosci.2021.100787">Crossref</a></li>
<li>Afrasiabi, M., Klippel, H., Roethlin, M., & Wegener, K. (2021). An improved thermal model for SPH metal cutting simulations on GPU. Applied Mathematical Modelling, 100, 728-750. <a href="https://doi.org/10.1016/j.apm.2021.08.010">Crossref</a></li>
<li>Siemann, M. H., & Ritt, S. A. (2019). Novel particle distributions for SPH bird-strike simulations. Computer Methods in Applied Mechanics and Engineering, 343, 746-766. <a href="https://doi.org/10.1016/j.cma.2018.08.044">Crossref</a></li>
<li>Lopez-Lago, M., Casado, R., Bermudez, A., & Serna, J. (2017). A predictive model for risk assessment on imminent bird strikes on airport areas. Aerospace Science and Technology, 62, 19-30. <a href="https://doi.org/10.1016/j.ast.2016.11.020">Crossref</a></li>
<li>Islam, M. R. I., Bansal, A., & Peng, C. (2020). Numerical simulation of metal machining process with Eulerian and Total Lagrangian SPH. Engineering Analysis with Boundary Elements, 117, 269-283. <a href="https://doi.org/10.1016/j.enganabound.2020.05.007">Crossref</a></li>
<li>Zhang, N., Klippel, H., Kneubühler, F., Afrasiabi, M., Röthlin, M., Kuffa, M., Bambach, M., & Wegener, K. (2023). Study on the effect of wear models in tool wear simulation using hybrid SPH-FEM method. Procedia CIRP, 117, 414-419. <a href="https://doi.org/10.1016/j.procir.2023.03.070">Crossref</a></li>
<li>Nguyen, T. A., & Tran, T. T. (2020). Drilling modelling using computer simulation. International Journal of Scientific & Technology Research, 9(10), 171-174.</li>
<li>Rod, O., Molkov, O., Lutsenko, N., Bolshikh, A., & Storchak, A. (2023). Effect of preloaded state slat structure on the stress–strain state of simulation bird strike. Aerospace Systems. <a href="https://doi.org/10.1007/s42401-023-00236-3">Crossref</a></li>
<li>Fu, Q., Wang, N., Shen, M., Song, N., & Yan, H. (2016). A study of the site selection of a civil airport based on the risk of bird strikes: The case of Dalian, China. Journal of Air Transport Management, 54, 17-30.</li>
<li>Hedayati, R., & Sadighi, M. (2015). Bird Strike: An Experimental, Theoretical and Numerical Investigation. Woodhead Publishing.</li>
<li>Smetankina, N., Kravchenko, I., Merculov, V., Ivchenko, D., & Malykhina, A. (2020). Modelling of bird strike on an aircraft glazing. In M. Nechyporuk, V. Pavlikov, & D. Kritskiy (Eds.), Integrated Computer Technologies in Mechanical Engineering (Vol. 1113, pp. 325-333). Springer, Cham. <a href="https://doi.org/10.1007/978-3-030-37618-5_25">Crossref</a></li>
<li>Tung, T. T., Nhi, N. Y., & Anh, N. T. (2021). A study on simulation of metal cutting process based on LS-Dyna. Journal of the Technical University of Gabrovo, 62, 47-55.</li>
<li>Wilbeck, J. (1977). Impact behavior of low strength projectiles. AFML-TR-77-134 Air Force Materials Lab, Air Force Wright Aeronautical Lab, Wright-Patterson Air Force Base, OH.</li>
<li>Zhang, Z., Li, L., & Zhang, D. (2018). Effect of arbitrary yaw/pitch angle in bird strike numerical simulation using SPH method. Aerospace Science and Technology, 81, 284-293. <a href="https://doi.org/10.1016/j.ast.2018.08.010">Crossref</a></li>
</ul>
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
СОГЛАШЕНИЕ О ПУБЛИКАЦИИ
Ежегодный журнал Технического университета Варны (ЕЖТУВ) гарантирует опубликование оригинальных материалов и, в то же время, предоставление своим авторам значительной свободы. Для этого мы придерживаемся гибкой политики в отношении авторских прав, означающей, что передача издателю авторских прав отсутствует, и авторы сохраняют эксклюзивные авторские права на свою работу.
При подаче рукописи ответственный автор должен принять условия, изложенные в данном Соглашении о публикации и состоящие в следующем:
ПРЕДОСТАВЛЕНИЕ ПРАВ ОТВЕТСТВЕННЫМ АВТОРОМ
Ответственный автор предоставляет AJTUV в течение полного срока действия авторского права и любых продлений или подновлений этого срока следующее:
• безотзывное неисключительное право публиковать, воспроизводить, переиздавать, передавать, распространять и иным образом использовать Работу в электронных и печатных изданиях и в производных произведениях по всему миру, на всех языках и во всех известных в настоящее время или появившихся впоследствии СМИ.
• безотзывное неисключительное право создавать и хранить электронные архивные копии Работы, в том числе право депонирования Работы в цифровых хранилищах открытого доступа.
• безотзывное неисключительное право лицензировать других лиц на воспроизведение, перевод, переиздание, передачу и распространение Работы при условии, что Авторы должным образом указаны (в настоящее время это осуществляется путем публикации Работы в соответствии с лицензией Creative Commons Attribution 4.0 Unported License).
Авторское право на Работу принадлежит Авторам. Авторы сохраняют за собой права на патенты, товарные знаки и другие права на интеллектуальную собственность.
ОБЯЗАННОСТИ ОТВЕТСТВЕННОГО АВТОРА
При распространении или повторной публикации Работы Ответственный Автор соглашается указывать AJTUV, в котором опубликована Работа, как источник первой публикации. Ответственный Автор гарантирует, что соавторы также будут согласны, чтобы Работа опубликовалась в AJTUV, который будет рассматриваться как первичный источник публикации в случае ее распространения или переиздания.
ГАРАНТИИ СО СТОРОНЫ ОТВЕТСТВЕННОГО АВТОРА
Ответственный автор гарантирует, что его Работа не нарушает закон или права какой-либо третьей стороны и, в частности, что Работа не содержит дискредитирующие материалы и не нарушает какие-либо литературные или имущественные права, права интеллектуальной собственности или любые другие права, касающиеся неприкосновенности частной жизни. Ответственный автор гарантирует, что Работа является оригинальной, официально не публиковалась ни в одном другом рецензируемом журнале, книге или редактируемом сборнике, и не рассматривается для какой-либо подобной публикации. Ответственный автор также гарантирует, что он или она имеет полное право заключить это соглашение. Если Работа была подготовлена совместно с другими соавторами, Ответственный Автор гарантирует, что все соавторы согласны с представлением и публикацией Работы.
Ответственный автор обязуется не вовлекать ЕЖТУВ в какие-любо нарушения вышеупомянутых заявлений и гарантий.
ПРАВА И ОБЯЗАННОСТИ ЕЖТУВ
ЕЖТУВ соглашается опубликовать Работу от имени ее авторов. ЕЖТУВ получает от имени авторов полномочия по обеспечению предусмотренных данным соглашением прав в отношении третьих сторон (например, в случаях плагиата или нарушения авторских прав).
Заявление о конфиденциальности ЕЖТУВ
Имена и адреса электронной почты, существующие на веб-сайте ЕЖТУВ, будут использоваться только и исключительно в заявленных целях данного ежегодного журнала и не будут доступны в иных целях или для любой другой стороны.
Вся предоставленная личная информация останется исключительно у издателя и не будет передаваться каким-либо внешним лицам, если на это не будет предоставлено предварительное разрешение.
Ваша личная информация никоим образом не будет продаваться, распространяться или публиковаться.