Appropriate Conversion of Machine Learning Data

Authors

  • Dimitar Georgiev Todorov Технически Университет - гр.Варна
  • Karova Milena

DOI:

https://doi.org/10.29114/ajtuv.vol6.iss2.262

Keywords:

homogeneous environment, machine learning, data, k Nearest Neighbours, Support-Vactor Machines, secret key

Abstract

Data is an important part of computer technology and, as such, explains the strong dependence of machine learning algorithms on it. The operation of any corresponding algorithm is directly dependent on the type of data and the proper data representation increases the productivity of these algorithms. Advanced in the present article is an algorithm for data pre-processing in a form that is most suitable for machine learning algorithms, with cryptographic secret keys being used as input data. The experimental results were satisfactory, and with the utilization of secret keys with significant differences, the recognition obtained is about 100%.

Downloads

Download data is not yet available.

References

<p>Antonov, P., Malchev, S. (2000). Cryptography in computer communications (pp. 70-164). Varna, Technical University of Varna<br />&nbsp;<br />Harrington, P., (2012). Machine learning in action (pp.3-149). Shelter Island, USA, Manning Publications Co<br />&nbsp;<br />Smola, A., Vishwanathan, S.V.N. (2008). Introduction to machine learning (pp.20-32). United Kingdom, Cambridge University Press<br />&nbsp;<br />Sarkar A., Chatterjee, Chakraborty, M. (2021). Role of Cryptography in Network Security, The "Essence" of Network Security: An End-to-End Panorama (pp 103-143). USA, SpringerLink<br /><a href="https://doi.org/10.1007/978-981-15-9317-8_5" target="_blank">Crossref</a><br />&nbsp;<br />Katz, J., Lindell Y. (2015). Introduction to Modern Cryptography (pp ). USA,CRC Press<br /><a href="https://doi.org/10.1201/b17668" target="_blank">Crossref</a><br />&nbsp;<br />Flach, P. (2012). Machine Learning. The Art and Science of Algorithms that Make Sense of Data (pp ). UK, Cambridge University Press<br /><a href="https://doi.org/10.1017/CBO9780511973000" target="_blank">Crossref</a><br />&nbsp;<br />Nakov, P., Dobrikov, P. (2015). Programming = ++ Algorithms; Fifth edition (pp ). Bulgaria, Software University<br />&nbsp;<br />G&eacute;ron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow (pp ). USA, O'Reilly<br />&nbsp;<br />Marsland, S. (2015). Machine Learning. An Algorithmic Perspective. Second Edition (pp ). USA, CRC<br /><a href="https://doi.org/10.1201/b17476" target="_blank">Crossref</a><br />&nbsp;<br />Shalev-Shwartz, S., Ben-David, S. (2014). Understanding Machine Learning. From Theory to Algorithms (pp ), USA, Cambridge University Press<br /><a href="https://doi.org/10.1017/CBO9781107298019" target="_blank">Crossref</a></p>

Downloads

Published

2022-12-31

How to Cite

Todorov, D. G., & Milena, K. (2022). Appropriate Conversion of Machine Learning Data. ANNUAL JOURNAL OF TECHNICAL UNIVERSITY OF VARNA, BULGARIA, 6(2), 63–76. https://doi.org/10.29114/ajtuv.vol6.iss2.262

Issue

Section

INFORMATION TECHNOLOGIES, COMMUNICATION AND COMPUTER EQUIPMENT

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.