Quantum secure communication models comparison

Автори

  • Georgi Petrov Bebrov Technical University of Varna
  • Rozalina Stefanova Dimova Technical University of Varna

##semicolon##

https://doi.org/10.29114/ajtuv.vol1.iss1.27

##semicolon##

quantum cryptography##common.commaListSeparator## quantum secure communication##common.commaListSeparator## quantum teleportation##common.commaListSeparator## superdense coding

Абстракт

The paper concerns the quantum cryptography, more specifically, the quantum secure communication type of schemes. The main focus here is on making a comparison between the distinct secure quantum communication models – quantum secure direct communication and deterministic secure quantum communication, in terms of three parameters: resource efficiency, eavesdropping check efficiency, and security (degree of preserving the confidentiality).

Изтегляния

Данни за теглене още не са налични.

##submission.authorBiographies##

##submission.authorWithAffiliation##

##submission.authorWithAffiliation##

##submission.citations##

<p>Bebrov, G., Dimova, R., &amp; Pencheva, E. (2017). Quantum approach to the information privacy in Smart Grid. Optimization of Electrical and Electronic Equipment (OPTIM) &amp; 2017 Intl Aegean Conference on Electrical Machines and Power Electronics (ACEMP), Brasov, Romania, 971&ndash;976. <br /><a href="https://doi.org/10.1109/OPTIM.2017.7975096" target="_blank" rel="noopener">Crossref</a><br />&nbsp;<br />Cabello, A. (2000). Quantum key distribution in the Holevo limit, Physical Review Letters, 85(26 Pt 1), 5635-8. <br /><a href="https://doi.org/10.1103/PhysRevLett.85.5635" target="_blank" rel="noopener">Crossref</a><br />&nbsp;<br />Cheng, C., Lu, R., Petzoldt, A., &amp; Takagi, T. (2017). Securing the Internet of Things in a quantum world. IEEE Communication magazine, 25(2), 116&ndash;120. <br /><a href="https://doi.org/10.1109/MCOM.2017.1600522CM" target="_blank" rel="noopener">Crossref</a><br />&nbsp;<br />Diamanti, E., Lo, H., Qi, B., &amp; Yuan, Z. (2016). Practical challenges in quantum key distribution, NPJ Quantum Information 2, 16025.&nbsp;<br /><a href="https://doi.org/10.1038/npjqi.2016.25" target="_blank" rel="noopener">Crossref</a><br />&nbsp;&nbsp;<br />Hassanpour, S. &amp; Houshmand, M. (2015). Efficient controlled quantum secure direct communication based on GHZ-like states. Quantum Information Processing, 14(2), 739&ndash;753.&nbsp;<br /><a href="https://doi.org/10.1007/s11128-014-0866-z" target="_blank" rel="noopener">Crossref</a><br />&nbsp;<br />Joy, D., Surendran, S., &amp; Sabir, M. (2017). Efficient Deterministic Secure Quantum Communication protocols using multipartite entangled states. Quantum Information Processing, 16(6), 1&ndash;11.&nbsp;<br /><a href="https://doi.org/10.1007/s11128-017-1613-z" target="_blank" rel="noopener">Crossref</a><br />&nbsp;<br />Liu, Z., Chen, H., Liu, W., Xu, J., Wang, d., &amp; Li, Z. (2013). Quantum secure direct communica-tion with optimal quantum superdense coding by using general four-qubit states. Quan-tum Information Processing, Volume 12, Issue 1, 587-599.&nbsp;<br /><a href="https://doi.org/10.1007/s11128-012-0404-9" target="_blank" rel="noopener">Crossref</a><br />&nbsp;<br />Long, G., Deng, F., Wang, C., Li, X., Wen, K., &amp; Wang, W. (2007). Quantum secure direct communication and deterministic secure quantum communication. Frontiers of Physics in China, Volume 2, Issue 3, 251&ndash;272.<br /><a href="https://doi.org/10.1007/s11467-007-0050-3" target="_blank" rel="noopener">Crossref</a><br />&nbsp;<br />Nieles, M., Dempsey, K., &amp; Pilliteri, V. (2017). An introduction to Information Security. NIST Special Publication 800-12, U.S. Department of Commerce.&nbsp;<br /><a href="https://doi.org/10.6028/NIST.SP.800-12r1" target="_blank" rel="noopener">Crossref</a><br />&nbsp;<br />Stallings, W. (2017). Cryptography and Network Security. Principles and Practice. Global Edition, Pearson Press.<br />&nbsp;<br />Wang, C., Deng, F., Li, Y., Liu, X., &amp; Long, G. (2005). Quantum secure direct communication and deterministic secure quantum communication. Physical Review A, Volume 71, Issue 4, 044305. <br /><a href="https://doi.org/10.1103/PhysRevA.71.044305" target="_blank" rel="noopener">Crossref</a><br />&nbsp;<br />Yan, F., Zhang, X. (2004). A scheme for secure direct communication using EPR pairs and teleportation. The European Physical Journal B 41, 75&ndash;78. <br /><a href="https://doi.org/10.1140/epjb/e2004-00296-4" target="_blank" rel="noopener">Crossref</a><br />&nbsp;<br />Zhang, W., Ding, D., Sheng, Y., Lan, Z., Shi, B. &amp; Guo, G. (2017). Quantum secure direct communication with quantum memory. Physical Review Letters, Volume 118, Issue 22, 220501.<br /> <a href="https://doi.org/10.1103/PhysRevLett.118.220501" target="_blank" rel="noopener">Crossref</a></p>

##submission.downloads##

Публикуван

2017-12-28

##submission.howToCite##

Bebrov, G. P., & Dimova, R. S. (2017). Quantum secure communication models comparison. ГОДИШНИК НА ТЕХНИЧЕСКИ УНИВЕРСИТЕТ - ВАРНА, 1(1), 21–26. https://doi.org/10.29114/ajtuv.vol1.iss1.27

Брой

Раздел (Секция)

ИНФОРМАЦИОННИ ТЕХНОЛОГИИ, КОМУНИКАЦИОННА И КОМПЮТЪРНА ТЕХНИКА

Подобни статии

Можете също да прегледате стартирайте разширено търсене за подобни статии във връзка с тази статия.