Quantum secure communication models comparison

Authors

  • Georgi Petrov Bebrov Technical University of Varna
  • Rozalina Stefanova Dimova Technical University of Varna

DOI:

https://doi.org/10.29114/ajtuv.vol1.iss1.27

Keywords:

quantum cryptography, quantum secure communication, quantum teleportation, superdense coding

Abstract

The paper concerns the quantum cryptography, more specifically, the quantum secure communication type of schemes. The main focus here is on making a comparison between the distinct secure quantum communication models – quantum secure direct communication and deterministic secure quantum communication, in terms of three parameters: resource efficiency, eavesdropping check efficiency, and security (degree of preserving the confidentiality).

Downloads

Download data is not yet available.

Author Biographies

Georgi Petrov Bebrov, Technical University of Varna

Rozalina Stefanova Dimova, Technical University of Varna

References

<p>Bebrov, G., Dimova, R., &amp; Pencheva, E. (2017). Quantum approach to the information privacy in Smart Grid. Optimization of Electrical and Electronic Equipment (OPTIM) &amp; 2017 Intl Aegean Conference on Electrical Machines and Power Electronics (ACEMP), Brasov, Romania, 971&ndash;976. <br /><a href="https://doi.org/10.1109/OPTIM.2017.7975096" target="_blank" rel="noopener">Crossref</a><br />&nbsp;<br />Cabello, A. (2000). Quantum key distribution in the Holevo limit, Physical Review Letters, 85(26 Pt 1), 5635-8. <br /><a href="https://doi.org/10.1103/PhysRevLett.85.5635" target="_blank" rel="noopener">Crossref</a><br />&nbsp;<br />Cheng, C., Lu, R., Petzoldt, A., &amp; Takagi, T. (2017). Securing the Internet of Things in a quantum world. IEEE Communication magazine, 25(2), 116&ndash;120. <br /><a href="https://doi.org/10.1109/MCOM.2017.1600522CM" target="_blank" rel="noopener">Crossref</a><br />&nbsp;<br />Diamanti, E., Lo, H., Qi, B., &amp; Yuan, Z. (2016). Practical challenges in quantum key distribution, NPJ Quantum Information 2, 16025.&nbsp;<br /><a href="https://doi.org/10.1038/npjqi.2016.25" target="_blank" rel="noopener">Crossref</a><br />&nbsp;&nbsp;<br />Hassanpour, S. &amp; Houshmand, M. (2015). Efficient controlled quantum secure direct communication based on GHZ-like states. Quantum Information Processing, 14(2), 739&ndash;753.&nbsp;<br /><a href="https://doi.org/10.1007/s11128-014-0866-z" target="_blank" rel="noopener">Crossref</a><br />&nbsp;<br />Joy, D., Surendran, S., &amp; Sabir, M. (2017). Efficient Deterministic Secure Quantum Communication protocols using multipartite entangled states. Quantum Information Processing, 16(6), 1&ndash;11.&nbsp;<br /><a href="https://doi.org/10.1007/s11128-017-1613-z" target="_blank" rel="noopener">Crossref</a><br />&nbsp;<br />Liu, Z., Chen, H., Liu, W., Xu, J., Wang, d., &amp; Li, Z. (2013). Quantum secure direct communica-tion with optimal quantum superdense coding by using general four-qubit states. Quan-tum Information Processing, Volume 12, Issue 1, 587-599.&nbsp;<br /><a href="https://doi.org/10.1007/s11128-012-0404-9" target="_blank" rel="noopener">Crossref</a><br />&nbsp;<br />Long, G., Deng, F., Wang, C., Li, X., Wen, K., &amp; Wang, W. (2007). Quantum secure direct communication and deterministic secure quantum communication. Frontiers of Physics in China, Volume 2, Issue 3, 251&ndash;272.<br /><a href="https://doi.org/10.1007/s11467-007-0050-3" target="_blank" rel="noopener">Crossref</a><br />&nbsp;<br />Nieles, M., Dempsey, K., &amp; Pilliteri, V. (2017). An introduction to Information Security. NIST Special Publication 800-12, U.S. Department of Commerce.&nbsp;<br /><a href="https://doi.org/10.6028/NIST.SP.800-12r1" target="_blank" rel="noopener">Crossref</a><br />&nbsp;<br />Stallings, W. (2017). Cryptography and Network Security. Principles and Practice. Global Edition, Pearson Press.<br />&nbsp;<br />Wang, C., Deng, F., Li, Y., Liu, X., &amp; Long, G. (2005). Quantum secure direct communication and deterministic secure quantum communication. Physical Review A, Volume 71, Issue 4, 044305. <br /><a href="https://doi.org/10.1103/PhysRevA.71.044305" target="_blank" rel="noopener">Crossref</a><br />&nbsp;<br />Yan, F., Zhang, X. (2004). A scheme for secure direct communication using EPR pairs and teleportation. The European Physical Journal B 41, 75&ndash;78. <br /><a href="https://doi.org/10.1140/epjb/e2004-00296-4" target="_blank" rel="noopener">Crossref</a><br />&nbsp;<br />Zhang, W., Ding, D., Sheng, Y., Lan, Z., Shi, B. &amp; Guo, G. (2017). Quantum secure direct communication with quantum memory. Physical Review Letters, Volume 118, Issue 22, 220501.<br /> <a href="https://doi.org/10.1103/PhysRevLett.118.220501" target="_blank" rel="noopener">Crossref</a></p>

Downloads

Published

2017-12-28

How to Cite

Bebrov, G. P., & Dimova, R. S. (2017). Quantum secure communication models comparison. ANNUAL JOURNAL OF TECHNICAL UNIVERSITY OF VARNA, BULGARIA, 1(1), 21–26. https://doi.org/10.29114/ajtuv.vol1.iss1.27

Issue

Section

INFORMATION TECHNOLOGIES, COMMUNICATION AND COMPUTER EQUIPMENT