Drone-based Monitoring of Sunflower Crops

Авторы

DOI:

https://doi.org/10.29114/ajtuv.vol6.iss1.258

Ключевые слова:

agricultural monitoring, infrared imaging, sunflower, vegetation indexes, drone, agricultural monitoring, infrared imaging, sunflower, vegetation indexes, drone

Аннотация

Remote monitoring and utilization of digital technologies is essential for the application of the precision farming approach, which contributes significantly to the improved quality of agricultural products. The paper compares the data for six vegetation indices when observing the sunflower vegetation in South Dobrudzha in 2021. Images with RGB and digital NIR camera were obtained via a remotely piloted quadcopter. The flight plan specifies speed 8 m/s, altitude 100 m and shooting overlapping images of 80%. Six vegetation indices: NDVI, EVI2, SAVI, CVI, MGVRI and MPRI were calculated from the images obtained during the flight. The calculation of the indices takes into account the intensity of solar radiation and the parameters of the meteorological situation at the time of shooting. The findings obtained reveal a stable trend of change of the vegetation indices, thus, establishing accurate and reliable results as for the monitoring of agricultural areas with unmanned aerial vehicles.

Скачивания

Данные скачивания пока недоступны.

Биографии авторов

Asparuh Atanasov, Technical University of Varna, Bulgaria

dept. of Mechanics and Elements of Machines

Radko Mihaylov, Technical University of Varna, Bulgaria

dept. Mechanics and Elements of Machines

Svilen Stoyanov, Technical University of Varna, Bulgaria

dept. of Manufacturing Technologies and Machine Tools

Desislava Mihaylova, Technical University of Varna, Bulgaria

dept. of Electronic Technique and Microelectronics

Peter Benov, Technical University of Varna, Bulgaria

Dobrudgza Technological College

Библиографические ссылки

<p>Baret, F., Jacquemoud, S. &amp; Hanocq, J. F. (1993). The Soil Line Concept in Remote Sensing. <em>Remote Sensing Reviews</em>, <em>7</em>(1), 65-82. <u><a href="https://doi.org/10.1080/02757259309532166">https://doi.org/10.1080/02757259309532166</a></u></p>
<p>&nbsp;Bannari, A., Morin, D., Huete, A.R. &amp; Bonn, F. (1995). Our view of vegetation indices. <em>Remote Sensing Reviews, 13</em>(1-2)<em>,</em> 95-120. <u><a href="https://doi.org/10.1080/02757259509532298">https://doi.org/10.1080/02757259509532298</a></u></p>
<p>&nbsp;Bendig, J., Yu, K., Aasen, H., Bolten, A., Bennertz, S., Broscheit, J. &amp; Bareth, G. (2015). Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. <em>International Journal of Applied Earth Observation and Geoinformation</em>, <em>39</em>, 79-87. <u><a href="https://doi.org/10.1016/j.jag.2015.02.012">https://doi.org/10.1016/j.jag.2015.02.012</a></u></p>
<p>&nbsp;Burgess, D. W., Lewis, P., &amp; Muller, J.-P.A.L. (1995). Topographic Effects in AVHRR NDVI Data. <em>Remote Sensing of Environment</em>, <em>54</em>, 223-232. <u><a href="https://doi.org/10.1016/0034-4257(95)00155-7">https://doi.org/10.1016/0034-4257(95)00155-7</a></u></p>
<p>&nbsp;Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). <em>Remote Sensing of Environment</em>, <em>25</em>, 295-309. <u><a href="https://doi.org/10.1016/0034-4257(88)90106-X">https://doi.org/10.1016/0034-4257(88)90106-X</a></u></p>
<p>&nbsp;Myneni, R.B. &amp; Asrar, G. (1994). Atmospheric Effects and Spectral Vegetation Indices. <em>Remote Sensing of Environment</em>, <em>17</em>, 390-402. <u><a href="https://doi.org/10.1016/0034-4257(94)90106-6">https://doi.org/10.1016/0034-4257(94)90106-6</a></u></p>
<p>&nbsp;Mihaylov, R. (2019). Using drones to track development of maize cultivation. <em>Farm machinery and Processes Management in sustainable Agriculture, Machinery Equipment, Lublin, Poland</em> <em>2019</em>, 43-48. <u><a href="https://doi.org/10.24326/fmpmsa.2019.1">https://doi.org/10.24326/fmpmsa.2019.1</a></u></p>
<p>&nbsp;Mihaylov, R., Atanasov, A., Ivanova, A., &amp; Mihaylova, D. (2020). Study of the vegetation of spring crops in the region of South Dobrudhza in 2020. <em>Annual Journal of Technical University of Varna (AJTUV)</em>, <em>4</em>(2),122-129. &nbsp;<u><a href="https://doi.org/10.29114/ajtuv.vol4.iss2.203">https://doi.org/10.29114/ajtuv.vol4.iss2.203</a></u></p>
<p>Mihajlow, R., &amp; Ivanova, A. (2019). Drone video capture - a new method in precision agriculture. <em>Annual Journal of Technical University of Varna (AJTUV), 3</em>(2) &nbsp;<u><a href="https://doi.org/10.29114/ajtuv.vol3.iss2.141">https://doi.org/10.29114/ajtuv.vol3.iss2.141</a></u></p>
<p>Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W., &amp; Harlan, J. C. (1974). <em>Monitoring the vernal advancement of retrogradation of natural vegetation, </em>p. 371. Greenbelt, MD: NASA/GSFC (Type III, Final Report).</p>
<p>&nbsp;Sankaran, S., Khot, L. R., Espinoza, C. Z., Jarolmasjed, S., Sathuvalli, V. R., Vandemark, G. J., et al. (2015). Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: a review. <em>Eur. J. Agron.</em>, <em>70</em>, 112-123. <u><a href="https://doi.org/10.1016/j.eja.2015.07.004">https://doi.org/10.1016/j.eja.2015.07.004</a></u></p>
<p>&nbsp;Shi, Y., Thomasson, J. A., Murray, S. C., Pugh, N. A., Rooney, W. L., Shafian, S., et al. (2016). Unmanned aerial vehicles for high-throughput phenotyping and agronomic research. <em>PLoS One, 11</em>(7) Article e0159781. <u><a href="https://doi.org/10.1371/journal.pone.0159781">https://doi.org/10.1371/journal.pone.0159781</a></u></p>
<p>&nbsp;Teillet, P.M., Staenz, K. &amp; Williams, D.J. (1997). Effects of spectral, spatial, and radiometric characteristics on remote sensing vegetation indices of forested regions. <em>Remote Sensing of Environment, 61</em>, 139-149. <u><a href="https://doi.org/10.1016/S0034-4257(96)00248-9">https://doi.org/10.1016/S0034-4257(96)00248-9</a></u></p>
<p>Vincini M., Frazzi, E. &amp; D' Alessio, P. (2008). A broad-band leaf chlorophyll vegetation index at the canopy scale. <em>Precision Agric, 9</em>, 303&ndash;319. <u><a href="https://doi.org/10.1007/s11119-008-9075-z">https://doi.org/10.1007/s11119-008-9075-z</a></u></p>
<p>Yang, Z., Willis, P. &amp; Mueller, R. (2008). <em>Impact of band-ratio enhanced AWIFS image to crop classification accuracy</em>. Pecora 17, 18-20. Department of Health and Ageing. (2012). Aboriginal and Torres Strait Islander health performance framework 2012 report.</p>
<p>&nbsp;Yang, G., Liu, J., Zhao, C., Li, Z., Huang, Y., Yu, H., et al. (2017). Unmanned aerial vehicle remote sensing for field-based crop phenotyping: current status and Perspectives. <em>Front. Plant Sci.</em>, <em>8</em>, <u><a href="https://doi.org/10.3389/fpls.2017.01111">https://doi.org/10.3389/fpls.2017.01111</a></u></p>
<p>&nbsp;Watson, D.J. (1947). Comparative physiological studies on the growth of field crops: I. Variation in net assimilation rate and leaf area between species and varieties and within and between years. <em>Annals of Botany., 11,</em> 41-76. <u><a href="https://doi.org/10.1093/oxfordjournals.aob.a083148">https://doi.org/10.1093/oxfordjournals.aob.a083148</a></u></p>
<p>&nbsp;Zhangyan J., Alfredo R.H., Kamel D., &amp; Tomoaki M. (2008). Development of a two-band enhanced vegetation index without a blue band. <em>Remote Sensing of Environment, 112</em> (10), 3833-3845. <u><a href="https://doi.org/10.1016/j.rse.2008.06.006">https://doi.org/10.1016/j.rse.2008.06.006</a></u></p>

Загрузки

Опубликован

2022-05-18

Как цитировать

Atanasov, A., Mihaylov, R., Stoyanov, S., Mihaylova, D., & Benov, P. (2022). Drone-based Monitoring of Sunflower Crops. ЕЖЕГОДНЫЙ ЖУРНАЛ ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА ВАРНЫ, БОЛГАРИЯ, 6(1), 1–9. https://doi.org/10.29114/ajtuv.vol6.iss1.258

Выпуск

Раздел

РАСТЕНИЕВОДСТВО

Похожие статьи

Вы также можете начать расширеннвй поиск похожих статей для этой статьи.