Experimental Study of the Characteristic of a PEM Reversible Fuel Cell

Автори

DOI:

https://doi.org/10.29114/ajtuv.vol6.iss1.263

Ключови думи:

fuel cell, mode, proton exchange membrane, electrolyze, polymer electrolyte membrane

Абстракт

Renewable energy sources are the proper way to protect and preserve the natural resources of the only planet we inhabit. The fuel cell is an interesting solution in the field of renewable energy sources. These devices convert the chemical energy from hydrogen and oxygen into electrical and thermal energy.  The present paper, therefore, focuses exclusively on their ability to generate electricity, their energy efficiency, quiet mode of operation, and environmental compatibility.  The polymer electrolyte membrane fuel cell coverts the energy at high density of power. The weight and cost of this cells are lower than the other kind of fuel cell. A reversible proton exchange membrane fuel cell is a kind of PEM fuel cell. It can operate in two modes - fuel cell mode and electrolyzer mode. Presented in the current paper are the experimental studies conducted into the operation of the fuel cell in electrolyzer and fuel cell mode. The relevant parameters and characteristics obtained from experiments are analyzed in relation to the mode of operation.

Изтегляния

Данни за теглене още не са налични.

Author Biographies

Dimitar Gugov, Technical University of Varna

Student at Technical University of Varna

Marin Todorov, Technical university of Varna

 PHD Student at Technical University of Varna, Department of Electrical Engineering and Electrotechnologies

References

<p style="text-align: justify;">Alaswad, A., Baroutaji, A., Rezk, A., Ramadan, M., &amp; Olabi, A. G. (2020).&nbsp;Advances in Solid Oxide Fuel Cell Materials. In&nbsp;<em>Encyclopedia of Smart Materials&nbsp;</em>(pp. 334-340). Elsevier.<br /><a href="https://doi.org/10.1016/B978-0-12-803581-8.11743-6" target="blank">Crossref</a></p>
<p style="text-align: justify;">Akinyele, D., Olabode, E. &amp; Amole, A. (2020). Review of Fuel Cell Technologies and Applications for Sustainable Microgrid Systems. <em>Inventions</em>, <em>5</em>(3), 42. <br /><a href="https://doi.org/10.3390/inventions5030042" target="_blank">Crossref</a></p>
<p style="text-align: justify;">Cheddie, D. &amp; Munroe, N. (2006). Three-dimensional modelling of high temperature PEM fuel cells, <em>Journal of Power Sources</em>, <em>160</em>(1), 215-223. <br/><a href="https://doi.org/10.1016/j.jpowsour.2006.01.035" target="_blank">Crossref</a></p>
<p style="text-align: justify;">Fuller, T. F., &amp; Gallagher, K. G. (2008). Phosphoric acid fuel cells. In&nbsp;<em>Materials for fuel cells</em>&nbsp;(pp. 209-247). Woodhead Publishing.<br/> <a href="https://doi.org/10.1533/9781845694838.209"target="_blank">Crossref</a></p>
<p style="text-align: justify;">Giap, V.-T., Lee, Y.D., Kim, Y. S., Bui, T. &amp; Ahn, K. Y. (2022).&nbsp; New definition of levelized cost of energy storage and its application to reversible solid oxide fuel-cell. <em>Journal of Energy</em>, <em>239</em>, Part C, 15 January 2022, 122220.<br/><a href="https://doi.org/10.1016/j.energy.2021.122220"target="_blank">Crossref</a></p>
<p style="text-align: justify;">G&uuml;lzow, E., &amp; Schulze, M. (2008). Alkaline fuel cells. In&nbsp;<em>Materials for Fuel Cells</em>&nbsp;(pp. 64-100). Woodhead Publishing.<br/><a href="https://doi.org/10.1533/9781845694838.64"target="_blank">Crossref</a></p>
<p style="text-align: justify;">Joghee, P., Malik, J. N., Pylypenko, S., &amp; O&rsquo;Hayre, R. (2015). A review on direct methanol fuel cells&ndash;In the perspective of energy and sustainability.&nbsp;<em>MRS Energy &amp; Sustainability</em>,&nbsp;<em>2</em>. <br/><a href="https://doi.org/10.1557/mre.2015.4"target="_blank">Crossref</a></p>
<p style="text-align: justify;">Kui, J. &amp; Xianguo, L. (2011). Water Transport in Polymer Electrolyte Membrane Fuel Cells.<em> Progress in Energy and Combustion Science</em>, <em>37</em>(3), 221-291. &nbsp;<br/><a href="https://doi.org/10.1016/j.pecs.2010.06.002"target="_blank">Crossref</a>.</p>
<p style="text-align: justify;">Mitzel, J.,Zhang, Q., Gazdzicki, P., &amp; Friedrich, K. (2021). Review on mechanisms and recovery procedures for reversible performance losses in polymer electrolyte membrane fuel cells. <em>Journal of Power Sources</em>, <em>488, </em><br/><a href="https://doi.org/10.1016/j.jpowsour.2020.229375"target="_blank">Crossref</a></p>
<p style="text-align: justify;">Ou, M., Zhang, R., Shao, Z., Li, B., Yang, D., Ming, P., Zhang, C. (2021). A novel approach based on semi-empirical model for degradation prediction of fuel cells, <em>Journal of Power Sources</em>. <em>488</em>, 229435.<br/><a href="https://doi.org/10.1016/j.jpowsour.2020.229435"target="_blank">Crossref</a></p>
<p style="text-align: justify;">Peng, J., Shin, J. &amp; Song, T. (2007). Transient response of high temperature PEM fuel cell. <em>Journal of Power Sources</em>, <em>179</em>, pp. 220-231.<br/><a href="https://doi.org/10.1016/j.jpowsour.2007.12.042"target="_blank">Crossref</a></p>
<p style="text-align: justify;">Rabih, S., Rallieres, O., Turpin, C. &amp; Astier S. (2008). Experimental study of a PEM Reversible Fuel Cell<em>. </em>&nbsp;<em>RE&amp;PQJ, 1</em>(6), 216-221.<br/><a href="https://doi.org/10.24084/repqj06.268"target="_blank">Crossref</a></p>
<p style="text-align: justify;">Rexed, I., della Pietra, M., McPhail, S., Lindbergh, G. &amp; Lagergren, C. (2015). Molten carbonate fuel cells for CO<sub>2</sub> separation and segregation by retrofitting existing plants &ndash; An analysis of feasible operating windows and first experimental findings. <em>International Journal of Greenhouse Gas Control</em>, <em>35</em> pp.120-130.<br/><a href="https://doi.org/10.1016/j.ijggc.2015.01.012"target="_blank">Crossref</a></p>
<p style="text-align: justify;">Sharaf, O. &amp; Orhan, M., A. (2014). An overview of fuel cell technology: Fundamentals and applications. <em>Renewable and Sustainable Energy Reviews</em>, <em>32</em>, pp.810-853. <br/> <a href="https://doi.org/10.1016/j.rser.2014.01.012"target="_blank">Crossref</a></p>
<p style="text-align: justify;">Streblau, M., Aprahamian, B., Simov, M. &amp; Dimova, T. (2014). The influence of the electrolyte parameters on the efficiency of the oxyhydrogen (HHO) generator. In 2014 <em>18th International Symposium on Electrical Apparatus and Technologies (SIELA)</em> (pp. 1-4). IEEE.<em>&nbsp; </em>&nbsp;<br/><a href="https://doi.org/10.1109/siela.2014.6871898"target="_blank">Crossref</a></p>

Downloads

Публикуван

2022-07-30

How to Cite

Gugov, D., Todorov, M., Streblau, M. J., & Dimova, T. (2022). Experimental Study of the Characteristic of a PEM Reversible Fuel Cell. ГОДИШНИК НА ТЕХНИЧЕСКИ УНИВЕРСИТЕТ - ВАРНА, 6(1), 28–33. https://doi.org/10.29114/ajtuv.vol6.iss1.263

Брой

Раздел (Секция)

ЕЛЕКТРОТЕХНИКА, ЕЛЕКТРОНИКА И АВТОМАТИКА

Подобни статии

Можете също да прегледате стартирайте разширено търсене за подобни статии във връзка с тази статия.