Mathematical model of parametrically controlled matched filters

Authors

  • Borislav Georgiev Naydenov Technical university of Varna
  • Antim Hristov Yordanov Technical university of Varna
  • Lyubomir Petrov Kamburov Technical university of Varna

DOI:

https://doi.org/10.29114/ajtuv.vol1.iss1.60

Keywords:

radar systems, matched filters, noise resistence

Abstract

A one model of parametrically controlled coherent filters is described and analyzed, applied also in radar systems and mobile communication systems to improve noise resistance. Application of the Nyquist-Shannon theorem in the frequency domain to obtain a set of frequency filters with variable parameters. The conversion of the signal at the output of the parameter filter using the auto correlation feature is shown when a normal white noise occurs.

Downloads

Download data is not yet available.

Author Biography

Lyubomir Petrov Kamburov, Technical university of Varna

References

<p>Ryzhak, I.S. (2003). Selected problems of the theory of circuits and signal processing. Russian. Publisher: Blok-Inform-Experss.<br /><br />Bissell, C. C. and V. E. Katsnelson (2006), (Trans.), accessible at http://ict.open.ac.uk/classics/ or via the Open University Open Research", Online at http://oro.open.ac.uk indexed as Bissell Classic Papers in Information &amp; Communication Technology.<br /><br />Petrov, P. P., B. G. Naydenov, G. C. Chervenkov. (2017). Radiocommunication technic. Technical university, Varna, Bulgaria.<br /><br />Marks, R.J.(II). (2009) Handbook of Fourier Analysis and Its Applications, Oxford University Press <br /><br />Proakis John. Digital connections. /translation/ Under the line. D.D. Klovskogo. (2000) &ndash; M. Radio and Sighs.<br /><br />Cook С. E., Bernfeld M. (1967) Radar Signals, Academic Press, New York. Radiolocation signals. Theory and application. - M.: Soviet Radio 1971. /translation/&nbsp;<br /><br />Naydenov, B. G., A. H. Yordanov. (2014) Analysis of the possibilities of filtering signals by predicting errors with linear invariant time discrete systems &ndash; Science Session -2014. National Mili-tary University "Vasil Levski", Faculty of Artillery Air Defense and Information Security. Shumen, Bulgaria.&nbsp;<br /><br />Petrov, P. P., B. G. Naydenov, G. C. Chervenkov. (2017). Mobile communication systems. Technical university, Varna, Bulgaria.<br /><br />Barton David K. (2004) Radar System Analysis and Modeling.&nbsp;<br /><br />Fish, A., Gurevich, S.; Hadani, R.; Sayeed, A.; Schwartz, O. (2011) Computing the matched filter in linear time". arXiv:1112.4883.&nbsp;<br /><br />Gray, D.A. (2006) Multi-channel Noise Radar, Proc. Of International Radar Symposium , IRS 2006, Krakow, Poland. <br /><a href="https://doi.org/10.1109/IRS.2006.4338086" target="_blank" rel="noopener">Crossref</a></p>

Downloads

Published

2017-12-28

How to Cite

Naydenov, B. G., Yordanov, A. H., & Kamburov, L. P. (2017). Mathematical model of parametrically controlled matched filters. ANNUAL JOURNAL OF TECHNICAL UNIVERSITY OF VARNA, BULGARIA, 1(1), 27–31. https://doi.org/10.29114/ajtuv.vol1.iss1.60

Issue

Section

INFORMATION TECHNOLOGIES, COMMUNICATION AND COMPUTER EQUIPMENT

Similar Articles

You may also start an advanced similarity search for this article.