Appropriate Conversion of Machine Learning Data

Авторы

  • Dimitar Georgiev Todorov Технически Университет - гр.Варна
  • Karova Milena

DOI:

https://doi.org/10.29114/ajtuv.vol6.iss2.262

Ключевые слова:

homogeneous environment, machine learning, data, k Nearest Neighbours, Support-Vactor Machines, secret key

Аннотация

Data is an important part of computer technology and, as such, explains the strong dependence of machine learning algorithms on it. The operation of any corresponding algorithm is directly dependent on the type of data and the proper data representation increases the productivity of these algorithms. Advanced in the present article is an algorithm for data pre-processing in a form that is most suitable for machine learning algorithms, with cryptographic secret keys being used as input data. The experimental results were satisfactory, and with the utilization of secret keys with significant differences, the recognition obtained is about 100%.

Скачивания

Данные скачивания пока недоступны.

Библиографические ссылки

<p>Antonov, P., Malchev, S. (2000). Cryptography in computer communications (pp. 70-164). Varna, Technical University of Varna<br />&nbsp;<br />Harrington, P., (2012). Machine learning in action (pp.3-149). Shelter Island, USA, Manning Publications Co<br />&nbsp;<br />Smola, A., Vishwanathan, S.V.N. (2008). Introduction to machine learning (pp.20-32). United Kingdom, Cambridge University Press<br />&nbsp;<br />Sarkar A., Chatterjee, Chakraborty, M. (2021). Role of Cryptography in Network Security, The "Essence" of Network Security: An End-to-End Panorama (pp 103-143). USA, SpringerLink<br /><a href="https://doi.org/10.1007/978-981-15-9317-8_5" target="_blank">Crossref</a><br />&nbsp;<br />Katz, J., Lindell Y. (2015). Introduction to Modern Cryptography (pp ). USA,CRC Press<br /><a href="https://doi.org/10.1201/b17668" target="_blank">Crossref</a><br />&nbsp;<br />Flach, P. (2012). Machine Learning. The Art and Science of Algorithms that Make Sense of Data (pp ). UK, Cambridge University Press<br /><a href="https://doi.org/10.1017/CBO9780511973000" target="_blank">Crossref</a><br />&nbsp;<br />Nakov, P., Dobrikov, P. (2015). Programming = ++ Algorithms; Fifth edition (pp ). Bulgaria, Software University<br />&nbsp;<br />G&eacute;ron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow (pp ). USA, O'Reilly<br />&nbsp;<br />Marsland, S. (2015). Machine Learning. An Algorithmic Perspective. Second Edition (pp ). USA, CRC<br /><a href="https://doi.org/10.1201/b17476" target="_blank">Crossref</a><br />&nbsp;<br />Shalev-Shwartz, S., Ben-David, S. (2014). Understanding Machine Learning. From Theory to Algorithms (pp ), USA, Cambridge University Press<br /><a href="https://doi.org/10.1017/CBO9781107298019" target="_blank">Crossref</a></p>

Загрузки

Опубликован

2022-12-31

Как цитировать

Todorov, D. G., & Milena, K. (2022). Appropriate Conversion of Machine Learning Data. ЕЖЕГОДНЫЙ ЖУРНАЛ ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА ВАРНЫ, БОЛГАРИЯ, 6(2), 63–76. https://doi.org/10.29114/ajtuv.vol6.iss2.262

Выпуск

Раздел

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ, СВЯЗЬ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

Похожие статьи

1 2 3 4 5 > >> 

Вы также можете начать расширеннвй поиск похожих статей для этой статьи.