Application of machine learning methods for the prediction of distress in patients with oncological diseases

Автори

  • Ginka Kaleva Marinova Technical University of Varna
  • Todor Ganchev Tеchnical University of Varna, Varna , Bulgaria http://orcid.org/0000-0003-0384-4033
  • Nedyalko Nikolov Tеchnical University of Varna, Varna , Bulgaria

##semicolon##

https://doi.org/10.29114/ajtuv.vol4.iss2.204

##semicolon##

distress management##common.commaListSeparator## oncological dataset##common.commaListSeparator## classification##common.commaListSeparator## boosting##common.commaListSeparator## bagging##common.commaListSeparator## Multilayer Perceptron Neural Network

Абстракт

 

 

 

 

Изтегляния

Данни за теглене още не са налични.

##submission.authorBiography##

##submission.authorWithAffiliation##

Технически университет - Варна

Факултет по Изчислителна техника и Автоматизация

Катедра: Компютърни науки и Технологии

       

##submission.citations##

<p>VanHoose L. еt al. (2015) An analysis of the distress thermometer problem list and distress in patients with cancer, Support Care Cancer, 23, 1225-1232.<br /><a href="https://doi.org/10.1007/s00520-014-2471-1" target="_blank" rel="noopener">Crossref</a><br />&nbsp;<br />Riba, Michelle B. et al. (2019). Distress Management, Version 3, NCCN Clinical Practice Guidelines in Oncology, JNCCN.org, 17(10), 1229-1249.&nbsp;<br /><a href="https://doi.org/10.6004/jnccn.2019.0048" target="_blank" rel="noopener">Crossref</a><br />&nbsp;<br />Власаков, В., и колектив (2015) Психосоциална подкрепа и рехабилитация в онкологията, национален експертен борд клинично ръководство, основано на доказателства, Атр Трейсър.<br />&nbsp;<br />Breiman, L. (1996) Bagging Predictors, Machine Learning , 24, 123-140.<br /><a href="https://doi.org/10.1007/BF00058655" target="_blank" rel="noopener">Crossref</a><br />&nbsp;<br />Кашницкий, Ю.С., &amp; Игнатов, Д.И. (2015) Ансамблевый метод машинного обучения, основанный на рекомендации классификаторов Интеллектуальные системы, Теория и приложения, Интеллектуальные системы. Теория и приложения, 19(4), 37-55.<br /><a href="https://scholar.google.com/scholar?hl=bg&amp;as_sdt=0%2C5&amp;q=%D0%9A%D0%B0%D1%88%D0%BD%D0%B8%D1%86%D0%BA%D0%B8%D0%B9%2C+%D0%AE.%D0%A1.%2C+%26+%D0%98%D0%B3%D0%BD%D0%B0%D1%82%D0%BE%D0%B2%2C+%D0%94.%D0%98.+%282015%29+%D0%90%D0%BD%D1%81%D0%B0%D0%BC%D0%B1%D0%BB%D0%B5%D0%B2%D1%8B%D0%B9+%D0%BC%D0%B5%D1%82%D0%BE%D0%B4+%D0%BC%D0%B0%D1%88%D0%B8%D0%BD%D0%BD%D0%BE%D0%B3%D0%BE+%D0%BE%D0%B1%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D1%8F%2C+%D0%BE%D1%81%D0%BD%D0%BE%D0%B2%D0%B0%D0%BD%D0%BD%D1%8B%D0%B9+%D0%BD%D0%B0+%D1%80%D0%B5%D0%BA%D0%BE%D0%BC%D0%B5%D0%BD%D0%B4%D0%B0%D1%86%D0%B8%D0%B8+%D0%BA%D0%BB%D0%B0%D1%81%D1%81%D0%B8%D1%84%D0%B8%D0%BA%D0%B0%D1%82%D0%BE%D1%80%D0%BE%D0%B2+%D0%98%D0%BD%D1%82%D0%B5%D0%BB%D0%BB%D0%B5%D0%BA%D1%82%D1%83%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B5+%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D1%8B%2C+%D0%A2%D0%B5%D0%BE%D1%80%D0%B8%D1%8F+%D0%B8+%D0%BF%D1%80%D0%B8%D0%BB%D0%BE%D0%B6%D0%B5%D0%BD%D0%B8%D1%8F%2C+%D0%98%D0%BD%D1%82%D0%B5%D0%BB%D0%BB%D0%B5%D0%BA%D1%82%D1%83%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B5+%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D1%8B.+%D0%A2%D0%B5%D0%BE%D1%80%D0%B8%D1%8F+%D0%B8+%D0%BF%D1%80%D0%B8%D0%BB%D0%BE%D0%B6%D0%B5%D0%BD%D0%B8%D1%8F%2C+19%284%29%2C+37-55.&amp;btnG=" target="_blank" rel="noopener">Google Scholar</a><br /><br />Mitchell, T. (1997). Machine Learning. McGraw-Hill, vol 1.<br />&nbsp;<br />Kantardzic, M., (2002) Data Mining Concepts, Models, Methods, and Algorithms,(1st ed.) Wiley-IEEE Press.<br /><a href="https://scholar.google.com/scholar?hl=bg&amp;as_sdt=0%2C5&amp;q=Kantardzic%2C+M.%2C+%282002%29+Data+Mining+Concepts%2C+Models%2C+Methods%2C+and+Algorithms%2C%281st+ed.%29+Wiley-IEEE+Press.&amp;btnG=" target="_blank" rel="noopener">Google Scholar</a><br /><br />Hossin, M., Sulaiman, M.N. (2015) A Review on Evaluation Metrics for Data Classification Evaluations, International Journal of Data Mining &amp; Knowledge Management Process (IJDKP), 5(2), 1-11.<br /><a href="https://doi.org/10.5121/ijdkp.2015.5201" target="_blank" rel="noopener">Crossref</a><br />&nbsp;<br />Калчева-Арабаджиева, Н., &amp; Николов, Н. (2017) Сравнителен анализ между наивния бейсов класификатор и метода на опорните вектори използващ оптимизация при класификация на български текст в машинното обучение, Списание Компютърни науки и технологии, ТУ - Варна, 97-105.<br />&nbsp;<br />Zhu W., Zeng, N, &amp; Wang, N. (2010) Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS implementations, NESUG: Health Care and Life Sciences, 19, 1-9.<br /><a href="https://scholar.google.com/scholar?hl=bg&amp;as_sdt=0%2C5&amp;q=Zhu+W.%2C+Zeng%2C+N%2C+%26+Wang%2C+N.+%282010%29+Sensitivity%2C+specificity%2C+accuracy%2C+associated+confidence+interval+and+ROC+analysis+with+practical+SAS+implementations%2C+NESUG%3A+Health+Care+and+Life+Sciences%2C+19%2C+1-9.&amp;btnG=" target="_blank" rel="noopener">Google Scholar</a><br /><br />Powers, D.M.W., (2011) Evaluation: From precision, recall and F-measure to ROC, informedness, markedness &amp; correlation, Journal of Machine Learning Technologies, 2(1), 37-63.<br /><a href="https://scholar.google.com/scholar?hl=bg&amp;as_sdt=0%2C5&amp;q=Powers%2C+D.M.W.%2C+%282011%29+Evaluation%3A+From+precision%2C+recall+and+F-measure+to+ROC%2C+informedness%2C+markedness+%26+correlation%2C+Journal+of+Machine+Learning+Technologies%2C+2%281%29%2C+37-63.&amp;btnG=" target="_blank" rel="noopener">Google Scholar</a><br /><br />Muhamedyev, R. (2015) Machine learning methods: An overview, Computer Modeling &amp;New Technologies, 19(6), 14-29.<br /><a href="https://scholar.google.com/scholar?hl=bg&amp;as_sdt=0%2C5&amp;q=Muhamedyev%2C+R.+%282015%29+Machine+learning+methods%3A+An+overview%2C+Computer+Modeling+%26New+Technologies%2C+19%286%29%2C+14-29.&amp;btnG=" target="_blank" rel="noopener">Google Scholar</a><br /><br />Marinova, G., Ganchev, T., and Nikolov, N., (2020) Synthesis of characteristic descriptors for the detection of distress, 2020 International Conference on Biomedical Innovations and Applications (BIA), Varna, Bulgaria, 73-76,&nbsp;<br /><a href="https://doi.org/10.1109/BIA50171.2020.9244488" target="_blank" rel="noopener">Crossref</a></p>

##submission.downloads##

Публикуван

2021-01-31

##submission.howToCite##

Marinova, G. K., Ganchev, T., & Nikolov, N. (2021). Application of machine learning methods for the prediction of distress in patients with oncological diseases. ГОДИШНИК НА ТЕХНИЧЕСКИ УНИВЕРСИТЕТ - ВАРНА, 4(2), 130–137. https://doi.org/10.29114/ajtuv.vol4.iss2.204

Брой

Раздел (Секция)

ИНФОРМАЦИОННИ ТЕХНОЛОГИИ, КОМУНИКАЦИОННА И КОМПЮТЪРНА ТЕХНИКА

Подобни статии

1 2 > >> 

Можете също да прегледате стартирайте разширено търсене за подобни статии във връзка с тази статия.