Application of machine learning methods for the prediction of distress in patients with oncological diseases

Автори

  • Ginka Kaleva Marinova Technical University of Varna
  • Todor Ganchev Tеchnical University of Varna, Varna , Bulgaria http://orcid.org/0000-0003-0384-4033
  • Nedyalko Nikolov Tеchnical University of Varna, Varna , Bulgaria

DOI:

https://doi.org/10.29114/ajtuv.vol4.iss2.204

Ключови думи:

distress management, oncological dataset, classification, boosting, bagging, Multilayer Perceptron Neural Network

Абстракт

 

 

 

 

Изтегляния

Данни за теглене още не са налични.

Author Biography

Ginka Kaleva Marinova, Technical University of Varna

Технически университет - Варна

Факултет по Изчислителна техника и Автоматизация

Катедра: Компютърни науки и Технологии

       

References

<p>VanHoose L. еt al. (2015) An analysis of the distress thermometer problem list and distress in patients with cancer, Support Care Cancer, 23, 1225-1232.<br /><a href="https://doi.org/10.1007/s00520-014-2471-1" target="_blank" rel="noopener">Crossref</a><br />&nbsp;<br />Riba, Michelle B. et al. (2019). Distress Management, Version 3, NCCN Clinical Practice Guidelines in Oncology, JNCCN.org, 17(10), 1229-1249.&nbsp;<br /><a href="https://doi.org/10.6004/jnccn.2019.0048" target="_blank" rel="noopener">Crossref</a><br />&nbsp;<br />Власаков, В., и колектив (2015) Психосоциална подкрепа и рехабилитация в онкологията, национален експертен борд клинично ръководство, основано на доказателства, Атр Трейсър.<br />&nbsp;<br />Breiman, L. (1996) Bagging Predictors, Machine Learning , 24, 123-140.<br /><a href="https://doi.org/10.1007/BF00058655" target="_blank" rel="noopener">Crossref</a><br />&nbsp;<br />Кашницкий, Ю.С., &amp; Игнатов, Д.И. (2015) Ансамблевый метод машинного обучения, основанный на рекомендации классификаторов Интеллектуальные системы, Теория и приложения, Интеллектуальные системы. Теория и приложения, 19(4), 37-55.<br /><a href="https://scholar.google.com/scholar?hl=bg&amp;as_sdt=0%2C5&amp;q=%D0%9A%D0%B0%D1%88%D0%BD%D0%B8%D1%86%D0%BA%D0%B8%D0%B9%2C+%D0%AE.%D0%A1.%2C+%26+%D0%98%D0%B3%D0%BD%D0%B0%D1%82%D0%BE%D0%B2%2C+%D0%94.%D0%98.+%282015%29+%D0%90%D0%BD%D1%81%D0%B0%D0%BC%D0%B1%D0%BB%D0%B5%D0%B2%D1%8B%D0%B9+%D0%BC%D0%B5%D1%82%D0%BE%D0%B4+%D0%BC%D0%B0%D1%88%D0%B8%D0%BD%D0%BD%D0%BE%D0%B3%D0%BE+%D0%BE%D0%B1%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D1%8F%2C+%D0%BE%D1%81%D0%BD%D0%BE%D0%B2%D0%B0%D0%BD%D0%BD%D1%8B%D0%B9+%D0%BD%D0%B0+%D1%80%D0%B5%D0%BA%D0%BE%D0%BC%D0%B5%D0%BD%D0%B4%D0%B0%D1%86%D0%B8%D0%B8+%D0%BA%D0%BB%D0%B0%D1%81%D1%81%D0%B8%D1%84%D0%B8%D0%BA%D0%B0%D1%82%D0%BE%D1%80%D0%BE%D0%B2+%D0%98%D0%BD%D1%82%D0%B5%D0%BB%D0%BB%D0%B5%D0%BA%D1%82%D1%83%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B5+%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D1%8B%2C+%D0%A2%D0%B5%D0%BE%D1%80%D0%B8%D1%8F+%D0%B8+%D0%BF%D1%80%D0%B8%D0%BB%D0%BE%D0%B6%D0%B5%D0%BD%D0%B8%D1%8F%2C+%D0%98%D0%BD%D1%82%D0%B5%D0%BB%D0%BB%D0%B5%D0%BA%D1%82%D1%83%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B5+%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D1%8B.+%D0%A2%D0%B5%D0%BE%D1%80%D0%B8%D1%8F+%D0%B8+%D0%BF%D1%80%D0%B8%D0%BB%D0%BE%D0%B6%D0%B5%D0%BD%D0%B8%D1%8F%2C+19%284%29%2C+37-55.&amp;btnG=" target="_blank" rel="noopener">Google Scholar</a><br /><br />Mitchell, T. (1997). Machine Learning. McGraw-Hill, vol 1.<br />&nbsp;<br />Kantardzic, M., (2002) Data Mining Concepts, Models, Methods, and Algorithms,(1st ed.) Wiley-IEEE Press.<br /><a href="https://scholar.google.com/scholar?hl=bg&amp;as_sdt=0%2C5&amp;q=Kantardzic%2C+M.%2C+%282002%29+Data+Mining+Concepts%2C+Models%2C+Methods%2C+and+Algorithms%2C%281st+ed.%29+Wiley-IEEE+Press.&amp;btnG=" target="_blank" rel="noopener">Google Scholar</a><br /><br />Hossin, M., Sulaiman, M.N. (2015) A Review on Evaluation Metrics for Data Classification Evaluations, International Journal of Data Mining &amp; Knowledge Management Process (IJDKP), 5(2), 1-11.<br /><a href="https://doi.org/10.5121/ijdkp.2015.5201" target="_blank" rel="noopener">Crossref</a><br />&nbsp;<br />Калчева-Арабаджиева, Н., &amp; Николов, Н. (2017) Сравнителен анализ между наивния бейсов класификатор и метода на опорните вектори използващ оптимизация при класификация на български текст в машинното обучение, Списание Компютърни науки и технологии, ТУ - Варна, 97-105.<br />&nbsp;<br />Zhu W., Zeng, N, &amp; Wang, N. (2010) Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS implementations, NESUG: Health Care and Life Sciences, 19, 1-9.<br /><a href="https://scholar.google.com/scholar?hl=bg&amp;as_sdt=0%2C5&amp;q=Zhu+W.%2C+Zeng%2C+N%2C+%26+Wang%2C+N.+%282010%29+Sensitivity%2C+specificity%2C+accuracy%2C+associated+confidence+interval+and+ROC+analysis+with+practical+SAS+implementations%2C+NESUG%3A+Health+Care+and+Life+Sciences%2C+19%2C+1-9.&amp;btnG=" target="_blank" rel="noopener">Google Scholar</a><br /><br />Powers, D.M.W., (2011) Evaluation: From precision, recall and F-measure to ROC, informedness, markedness &amp; correlation, Journal of Machine Learning Technologies, 2(1), 37-63.<br /><a href="https://scholar.google.com/scholar?hl=bg&amp;as_sdt=0%2C5&amp;q=Powers%2C+D.M.W.%2C+%282011%29+Evaluation%3A+From+precision%2C+recall+and+F-measure+to+ROC%2C+informedness%2C+markedness+%26+correlation%2C+Journal+of+Machine+Learning+Technologies%2C+2%281%29%2C+37-63.&amp;btnG=" target="_blank" rel="noopener">Google Scholar</a><br /><br />Muhamedyev, R. (2015) Machine learning methods: An overview, Computer Modeling &amp;New Technologies, 19(6), 14-29.<br /><a href="https://scholar.google.com/scholar?hl=bg&amp;as_sdt=0%2C5&amp;q=Muhamedyev%2C+R.+%282015%29+Machine+learning+methods%3A+An+overview%2C+Computer+Modeling+%26New+Technologies%2C+19%286%29%2C+14-29.&amp;btnG=" target="_blank" rel="noopener">Google Scholar</a><br /><br />Marinova, G., Ganchev, T., and Nikolov, N., (2020) Synthesis of characteristic descriptors for the detection of distress, 2020 International Conference on Biomedical Innovations and Applications (BIA), Varna, Bulgaria, 73-76,&nbsp;<br /><a href="https://doi.org/10.1109/BIA50171.2020.9244488" target="_blank" rel="noopener">Crossref</a></p>

Downloads

Публикуван

2021-01-31

How to Cite

Marinova, G. K., Ganchev, T., & Nikolov, N. (2021). Application of machine learning methods for the prediction of distress in patients with oncological diseases. ГОДИШНИК НА ТЕХНИЧЕСКИ УНИВЕРСИТЕТ - ВАРНА, 4(2), 130–137. https://doi.org/10.29114/ajtuv.vol4.iss2.204

Брой

Раздел (Секция)

ИНФОРМАЦИОННИ ТЕХНОЛОГИИ, КОМУНИКАЦИОННА И КОМПЮТЪРНА ТЕХНИКА

Подобни статии

1 2 > >> 

Можете също да прегледате стартирайте разширено търсене за подобни статии във връзка с тази статия.